Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação

Bibliographic Details
Main Author: Piotrowski, Leonardo Jonas
Publication Date: 2024
Format: Doctoral thesis
Language: por
Source: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/001300001bb4g
Download full: http://repositorio.ufsm.br/handle/1/33907
Summary: Solar energy is used worldwide to generate electricity with photovoltaic (PV) panels and is one of the fastest growing alternatives that contributes to meet the global energy demand. Among some of the factors that make this type of electricity generation an excellent alternative is the fact that it is a renewable, noise-free and universal source. There are several types of installation (topologies) for photovoltaic modules, such as using solar tracking, cooling and the traditional fixed topology that can be commonly used in photovoltaic plants installed on the ground and/or on rooftops. In all related projects, it is important to carry out an initial planning that adequately meets the demand for electricity and the return on investments involved, regardless of the installation topology. Among the various factors, and one of the most important, is the forecast of the energy generation that the installation will be able to provide. In this sense, this study addresses planning that consists of applying artificial intelligence (AI) considering the prediction of solar irradiance, durability and performance of modules in different installation topologies. Knowing that the degradation of the panel output power can assume different values, it needs to be estimated and accounted for in order to adequately model the prediction of the generated energy, providing greater reliability and availability of photovoltaic generators. In this thesis, AI contributed to a better planning of PV installations in two aspects. On the one hand, deep machine learning was applied in the training of a neural network to make it capable of predicting solar irradiance and, on the other hand, fuzzy logic was applied to find the degradation of the panel installed under different topologies. In short, this modeling consisted of collecting a history of solar irradiation data, processing this data and inserting it into a recurrent neural network (RNN) with long and short-term memory (LSTM) to perform the prediction. Fuzzy logic together with technical information about the modules and the type of topology used was applied to find out the degradation and, consequently, the prediction of the electrical output power. Several computational simulations were performed to adjust the developed model. The financial aspects of the PV topologies studied here were accounted for to verify the economic viability. The results obtained showed that both topologies are viable and, although the solar tracking topology results in greater degradation in relation to the others, it still compensates for the greater amount of electricity generated in the analyzed period. The prediction of solar irradiance reached a satisfactory accuracy compared to other methods listed in this thesis. In addition, the predicted solar irradiance was validated with real data obtained for the city of Santa Maria, RS, Brazil. A reduction in prediction error associated with a better understanding of PV panel durability contributed to a more reliable planning of different installation topologies.
id UFSM_4bd4e724aaf1fb7bf7f2d02bc83d7db7
oai_identifier_str oai:repositorio.ufsm.br:1/33907
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalaçãoPlanning of photovoltaic energy generation using artificial intelligence in its different installation topologiesInteligência artificialGeração de energia fotovoltaicaDegradação da potência de saída fotovoltaicaAprendizado profundo de máquinaTopologias de instalação fotovoltaicaArtificial intelligencePhotovoltaic power generation forecastPhotovoltaic output power degradationDeep learningPhotovoltaic installation topologiesCNPQ::ENGENHARIAS::ENGENHARIA ELETRICASolar energy is used worldwide to generate electricity with photovoltaic (PV) panels and is one of the fastest growing alternatives that contributes to meet the global energy demand. Among some of the factors that make this type of electricity generation an excellent alternative is the fact that it is a renewable, noise-free and universal source. There are several types of installation (topologies) for photovoltaic modules, such as using solar tracking, cooling and the traditional fixed topology that can be commonly used in photovoltaic plants installed on the ground and/or on rooftops. In all related projects, it is important to carry out an initial planning that adequately meets the demand for electricity and the return on investments involved, regardless of the installation topology. Among the various factors, and one of the most important, is the forecast of the energy generation that the installation will be able to provide. In this sense, this study addresses planning that consists of applying artificial intelligence (AI) considering the prediction of solar irradiance, durability and performance of modules in different installation topologies. Knowing that the degradation of the panel output power can assume different values, it needs to be estimated and accounted for in order to adequately model the prediction of the generated energy, providing greater reliability and availability of photovoltaic generators. In this thesis, AI contributed to a better planning of PV installations in two aspects. On the one hand, deep machine learning was applied in the training of a neural network to make it capable of predicting solar irradiance and, on the other hand, fuzzy logic was applied to find the degradation of the panel installed under different topologies. In short, this modeling consisted of collecting a history of solar irradiation data, processing this data and inserting it into a recurrent neural network (RNN) with long and short-term memory (LSTM) to perform the prediction. Fuzzy logic together with technical information about the modules and the type of topology used was applied to find out the degradation and, consequently, the prediction of the electrical output power. Several computational simulations were performed to adjust the developed model. The financial aspects of the PV topologies studied here were accounted for to verify the economic viability. The results obtained showed that both topologies are viable and, although the solar tracking topology results in greater degradation in relation to the others, it still compensates for the greater amount of electricity generated in the analyzed period. The prediction of solar irradiance reached a satisfactory accuracy compared to other methods listed in this thesis. In addition, the predicted solar irradiance was validated with real data obtained for the city of Santa Maria, RS, Brazil. A reduction in prediction error associated with a better understanding of PV panel durability contributed to a more reliable planning of different installation topologies.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA energia solar é utilizada mundialmente para geração de energia elétrica com painéis fotovoltaicos (PV), sendo uma das alternativas que mais cresce e contribui para suprir a demanda energética mundial. Entre alguns dos fatores que tornam esse tipo de geração de eletricidade uma excelente alternativa está o fato de ser uma fonte renovável, livre de ruído e universal. Existem vários tipos de instalação (topologias) dos módulos fotovoltaicos como, por exemplo, usando rastreamento solar, arrefecimento e a topologia fixa tradicional que pode ser comumente usada em usinas fotovoltaicas instaladas no solo e/ou em telhados. Em todos os projetos relacionados é importante realizar-se um planejamento inicial que atenda adequadamente a demanda de energia elétrica e o retorno dos investimentos envolvidos independentemente da topologia de instalação. Entre os diversos fatores, e um dos mais importantes, está a previsão da geração de energia que a instalação será capaz de fornecer. Nesse sentido, este estudo aborda um planejamento que consiste na aplicação de inteligência artificial (IA) considerando a previsão da irradiância solar, a durabilidade e o desempenho dos módulos em diferentes topologias de instalação. Sabendo que a degradação da potência de saída do painel pode assumir diferentes valores, ela precisa ser estimada e contabilizada para modelar adequadamente a previsão da energia gerada ao longo de sua vida útil proporcionando maior confiabilidade e disponibilidade dos geradores fotovoltaicos. Nesta tese, a IA contribuiu para um melhor planejamento das instalações PV sob dois aspectos. Por um lado, o aprendizado de máquina profundo foi aplicado no treinamento de uma rede neural para torná-la capaz de prever a irradiância solar e, por outro lado, a lógica fuzzy foi aplicada para encontrar a degradação do painel instalado sob diferentes topologias. Em suma, esta modelagem consistiu em coletar um histórico de dados da irradiação solar, processar esses dados e inseri-los em uma rede neural recorrente (RNN) com memórias de longo e curto prazos (LSTM) para realizar a previsão. A lógica fuzzy juntamente com as informações técnicas sobre os módulos e o tipo de topologia utilizada foi aplicada para encontrar a degradação e, consequentemente, a previsão da potência elétrica de saída. Diversas simulações computacionais foram realizadas para ajustar o modelo desenvolvido. Os aspectos financeiros das topologias PV estudadas foram contabilizados para verificar a viabilidade econômica. Os resultados obtidos mostraram que ambas as topologias são viáveis e, embora a topologia com rastreamento solar resulte em uma maior degradação em relação às demais, ainda compensa pela maior quantidade de eletricidade gerada no período analisado. A previsão da irradiância solar atingiu uma precisão satisfatória em relação aos demais métodos elencados nesta tese. Além disso, a irradiância solar prevista foi validada com dados reais obtidos para a cidade de Santa Maria, RS, Brasil. Uma redução do erro de previsão associado a uma melhor compreensão da durabilidade dos painéis PV contribuiu para um planejamento mais confiável das diferentes topologias de instalação.Universidade Federal de Santa MariaBrasilEngenharia ElétricaUFSMPrograma de Pós-Graduação em Engenharia ElétricaCentro de TecnologiaFarret, Felix Albertohttp://lattes.cnpq.br/5783619992936443Roque, Alexandre dos SantosBernardon, Daniel PinheiroFigueiró, Iuri CastroNaidon, Thiago CattaniPiotrowski, Leonardo Jonas2025-01-21T13:32:05Z2025-01-21T13:32:05Z2024-08-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/33907ark:/26339/001300001bb4gporAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2025-01-21T13:32:06Zoai:repositorio.ufsm.br:1/33907Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2025-01-21T13:32:06Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação
Planning of photovoltaic energy generation using artificial intelligence in its different installation topologies
title Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação
spellingShingle Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação
Piotrowski, Leonardo Jonas
Inteligência artificial
Geração de energia fotovoltaica
Degradação da potência de saída fotovoltaica
Aprendizado profundo de máquina
Topologias de instalação fotovoltaica
Artificial intelligence
Photovoltaic power generation forecast
Photovoltaic output power degradation
Deep learning
Photovoltaic installation topologies
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação
title_full Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação
title_fullStr Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação
title_full_unstemmed Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação
title_sort Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação
author Piotrowski, Leonardo Jonas
author_facet Piotrowski, Leonardo Jonas
author_role author
dc.contributor.none.fl_str_mv Farret, Felix Alberto
http://lattes.cnpq.br/5783619992936443
Roque, Alexandre dos Santos
Bernardon, Daniel Pinheiro
Figueiró, Iuri Castro
Naidon, Thiago Cattani
dc.contributor.author.fl_str_mv Piotrowski, Leonardo Jonas
dc.subject.por.fl_str_mv Inteligência artificial
Geração de energia fotovoltaica
Degradação da potência de saída fotovoltaica
Aprendizado profundo de máquina
Topologias de instalação fotovoltaica
Artificial intelligence
Photovoltaic power generation forecast
Photovoltaic output power degradation
Deep learning
Photovoltaic installation topologies
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Inteligência artificial
Geração de energia fotovoltaica
Degradação da potência de saída fotovoltaica
Aprendizado profundo de máquina
Topologias de instalação fotovoltaica
Artificial intelligence
Photovoltaic power generation forecast
Photovoltaic output power degradation
Deep learning
Photovoltaic installation topologies
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description Solar energy is used worldwide to generate electricity with photovoltaic (PV) panels and is one of the fastest growing alternatives that contributes to meet the global energy demand. Among some of the factors that make this type of electricity generation an excellent alternative is the fact that it is a renewable, noise-free and universal source. There are several types of installation (topologies) for photovoltaic modules, such as using solar tracking, cooling and the traditional fixed topology that can be commonly used in photovoltaic plants installed on the ground and/or on rooftops. In all related projects, it is important to carry out an initial planning that adequately meets the demand for electricity and the return on investments involved, regardless of the installation topology. Among the various factors, and one of the most important, is the forecast of the energy generation that the installation will be able to provide. In this sense, this study addresses planning that consists of applying artificial intelligence (AI) considering the prediction of solar irradiance, durability and performance of modules in different installation topologies. Knowing that the degradation of the panel output power can assume different values, it needs to be estimated and accounted for in order to adequately model the prediction of the generated energy, providing greater reliability and availability of photovoltaic generators. In this thesis, AI contributed to a better planning of PV installations in two aspects. On the one hand, deep machine learning was applied in the training of a neural network to make it capable of predicting solar irradiance and, on the other hand, fuzzy logic was applied to find the degradation of the panel installed under different topologies. In short, this modeling consisted of collecting a history of solar irradiation data, processing this data and inserting it into a recurrent neural network (RNN) with long and short-term memory (LSTM) to perform the prediction. Fuzzy logic together with technical information about the modules and the type of topology used was applied to find out the degradation and, consequently, the prediction of the electrical output power. Several computational simulations were performed to adjust the developed model. The financial aspects of the PV topologies studied here were accounted for to verify the economic viability. The results obtained showed that both topologies are viable and, although the solar tracking topology results in greater degradation in relation to the others, it still compensates for the greater amount of electricity generated in the analyzed period. The prediction of solar irradiance reached a satisfactory accuracy compared to other methods listed in this thesis. In addition, the predicted solar irradiance was validated with real data obtained for the city of Santa Maria, RS, Brazil. A reduction in prediction error associated with a better understanding of PV panel durability contributed to a more reliable planning of different installation topologies.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-26
2025-01-21T13:32:05Z
2025-01-21T13:32:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/33907
dc.identifier.dark.fl_str_mv ark:/26339/001300001bb4g
url http://repositorio.ufsm.br/handle/1/33907
identifier_str_mv ark:/26339/001300001bb4g
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847103568429973504