Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Format: | Doctoral thesis |
| Language: | por |
| Source: | Manancial - Repositório Digital da UFSM |
| dARK ID: | ark:/26339/001300001bb4g |
| Download full: | http://repositorio.ufsm.br/handle/1/33907 |
Summary: | Solar energy is used worldwide to generate electricity with photovoltaic (PV) panels and is one of the fastest growing alternatives that contributes to meet the global energy demand. Among some of the factors that make this type of electricity generation an excellent alternative is the fact that it is a renewable, noise-free and universal source. There are several types of installation (topologies) for photovoltaic modules, such as using solar tracking, cooling and the traditional fixed topology that can be commonly used in photovoltaic plants installed on the ground and/or on rooftops. In all related projects, it is important to carry out an initial planning that adequately meets the demand for electricity and the return on investments involved, regardless of the installation topology. Among the various factors, and one of the most important, is the forecast of the energy generation that the installation will be able to provide. In this sense, this study addresses planning that consists of applying artificial intelligence (AI) considering the prediction of solar irradiance, durability and performance of modules in different installation topologies. Knowing that the degradation of the panel output power can assume different values, it needs to be estimated and accounted for in order to adequately model the prediction of the generated energy, providing greater reliability and availability of photovoltaic generators. In this thesis, AI contributed to a better planning of PV installations in two aspects. On the one hand, deep machine learning was applied in the training of a neural network to make it capable of predicting solar irradiance and, on the other hand, fuzzy logic was applied to find the degradation of the panel installed under different topologies. In short, this modeling consisted of collecting a history of solar irradiation data, processing this data and inserting it into a recurrent neural network (RNN) with long and short-term memory (LSTM) to perform the prediction. Fuzzy logic together with technical information about the modules and the type of topology used was applied to find out the degradation and, consequently, the prediction of the electrical output power. Several computational simulations were performed to adjust the developed model. The financial aspects of the PV topologies studied here were accounted for to verify the economic viability. The results obtained showed that both topologies are viable and, although the solar tracking topology results in greater degradation in relation to the others, it still compensates for the greater amount of electricity generated in the analyzed period. The prediction of solar irradiance reached a satisfactory accuracy compared to other methods listed in this thesis. In addition, the predicted solar irradiance was validated with real data obtained for the city of Santa Maria, RS, Brazil. A reduction in prediction error associated with a better understanding of PV panel durability contributed to a more reliable planning of different installation topologies. |
| id |
UFSM_4bd4e724aaf1fb7bf7f2d02bc83d7db7 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufsm.br:1/33907 |
| network_acronym_str |
UFSM |
| network_name_str |
Manancial - Repositório Digital da UFSM |
| repository_id_str |
|
| spelling |
Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalaçãoPlanning of photovoltaic energy generation using artificial intelligence in its different installation topologiesInteligência artificialGeração de energia fotovoltaicaDegradação da potência de saída fotovoltaicaAprendizado profundo de máquinaTopologias de instalação fotovoltaicaArtificial intelligencePhotovoltaic power generation forecastPhotovoltaic output power degradationDeep learningPhotovoltaic installation topologiesCNPQ::ENGENHARIAS::ENGENHARIA ELETRICASolar energy is used worldwide to generate electricity with photovoltaic (PV) panels and is one of the fastest growing alternatives that contributes to meet the global energy demand. Among some of the factors that make this type of electricity generation an excellent alternative is the fact that it is a renewable, noise-free and universal source. There are several types of installation (topologies) for photovoltaic modules, such as using solar tracking, cooling and the traditional fixed topology that can be commonly used in photovoltaic plants installed on the ground and/or on rooftops. In all related projects, it is important to carry out an initial planning that adequately meets the demand for electricity and the return on investments involved, regardless of the installation topology. Among the various factors, and one of the most important, is the forecast of the energy generation that the installation will be able to provide. In this sense, this study addresses planning that consists of applying artificial intelligence (AI) considering the prediction of solar irradiance, durability and performance of modules in different installation topologies. Knowing that the degradation of the panel output power can assume different values, it needs to be estimated and accounted for in order to adequately model the prediction of the generated energy, providing greater reliability and availability of photovoltaic generators. In this thesis, AI contributed to a better planning of PV installations in two aspects. On the one hand, deep machine learning was applied in the training of a neural network to make it capable of predicting solar irradiance and, on the other hand, fuzzy logic was applied to find the degradation of the panel installed under different topologies. In short, this modeling consisted of collecting a history of solar irradiation data, processing this data and inserting it into a recurrent neural network (RNN) with long and short-term memory (LSTM) to perform the prediction. Fuzzy logic together with technical information about the modules and the type of topology used was applied to find out the degradation and, consequently, the prediction of the electrical output power. Several computational simulations were performed to adjust the developed model. The financial aspects of the PV topologies studied here were accounted for to verify the economic viability. The results obtained showed that both topologies are viable and, although the solar tracking topology results in greater degradation in relation to the others, it still compensates for the greater amount of electricity generated in the analyzed period. The prediction of solar irradiance reached a satisfactory accuracy compared to other methods listed in this thesis. In addition, the predicted solar irradiance was validated with real data obtained for the city of Santa Maria, RS, Brazil. A reduction in prediction error associated with a better understanding of PV panel durability contributed to a more reliable planning of different installation topologies.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESA energia solar é utilizada mundialmente para geração de energia elétrica com painéis fotovoltaicos (PV), sendo uma das alternativas que mais cresce e contribui para suprir a demanda energética mundial. Entre alguns dos fatores que tornam esse tipo de geração de eletricidade uma excelente alternativa está o fato de ser uma fonte renovável, livre de ruído e universal. Existem vários tipos de instalação (topologias) dos módulos fotovoltaicos como, por exemplo, usando rastreamento solar, arrefecimento e a topologia fixa tradicional que pode ser comumente usada em usinas fotovoltaicas instaladas no solo e/ou em telhados. Em todos os projetos relacionados é importante realizar-se um planejamento inicial que atenda adequadamente a demanda de energia elétrica e o retorno dos investimentos envolvidos independentemente da topologia de instalação. Entre os diversos fatores, e um dos mais importantes, está a previsão da geração de energia que a instalação será capaz de fornecer. Nesse sentido, este estudo aborda um planejamento que consiste na aplicação de inteligência artificial (IA) considerando a previsão da irradiância solar, a durabilidade e o desempenho dos módulos em diferentes topologias de instalação. Sabendo que a degradação da potência de saída do painel pode assumir diferentes valores, ela precisa ser estimada e contabilizada para modelar adequadamente a previsão da energia gerada ao longo de sua vida útil proporcionando maior confiabilidade e disponibilidade dos geradores fotovoltaicos. Nesta tese, a IA contribuiu para um melhor planejamento das instalações PV sob dois aspectos. Por um lado, o aprendizado de máquina profundo foi aplicado no treinamento de uma rede neural para torná-la capaz de prever a irradiância solar e, por outro lado, a lógica fuzzy foi aplicada para encontrar a degradação do painel instalado sob diferentes topologias. Em suma, esta modelagem consistiu em coletar um histórico de dados da irradiação solar, processar esses dados e inseri-los em uma rede neural recorrente (RNN) com memórias de longo e curto prazos (LSTM) para realizar a previsão. A lógica fuzzy juntamente com as informações técnicas sobre os módulos e o tipo de topologia utilizada foi aplicada para encontrar a degradação e, consequentemente, a previsão da potência elétrica de saída. Diversas simulações computacionais foram realizadas para ajustar o modelo desenvolvido. Os aspectos financeiros das topologias PV estudadas foram contabilizados para verificar a viabilidade econômica. Os resultados obtidos mostraram que ambas as topologias são viáveis e, embora a topologia com rastreamento solar resulte em uma maior degradação em relação às demais, ainda compensa pela maior quantidade de eletricidade gerada no período analisado. A previsão da irradiância solar atingiu uma precisão satisfatória em relação aos demais métodos elencados nesta tese. Além disso, a irradiância solar prevista foi validada com dados reais obtidos para a cidade de Santa Maria, RS, Brasil. Uma redução do erro de previsão associado a uma melhor compreensão da durabilidade dos painéis PV contribuiu para um planejamento mais confiável das diferentes topologias de instalação.Universidade Federal de Santa MariaBrasilEngenharia ElétricaUFSMPrograma de Pós-Graduação em Engenharia ElétricaCentro de TecnologiaFarret, Felix Albertohttp://lattes.cnpq.br/5783619992936443Roque, Alexandre dos SantosBernardon, Daniel PinheiroFigueiró, Iuri CastroNaidon, Thiago CattaniPiotrowski, Leonardo Jonas2025-01-21T13:32:05Z2025-01-21T13:32:05Z2024-08-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/33907ark:/26339/001300001bb4gporAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2025-01-21T13:32:06Zoai:repositorio.ufsm.br:1/33907Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2025-01-21T13:32:06Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
| dc.title.none.fl_str_mv |
Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação Planning of photovoltaic energy generation using artificial intelligence in its different installation topologies |
| title |
Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação |
| spellingShingle |
Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação Piotrowski, Leonardo Jonas Inteligência artificial Geração de energia fotovoltaica Degradação da potência de saída fotovoltaica Aprendizado profundo de máquina Topologias de instalação fotovoltaica Artificial intelligence Photovoltaic power generation forecast Photovoltaic output power degradation Deep learning Photovoltaic installation topologies CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| title_short |
Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação |
| title_full |
Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação |
| title_fullStr |
Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação |
| title_full_unstemmed |
Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação |
| title_sort |
Planejamento da geração de energia fotovoltaica usando inteligência artificial em suas diferentes topologias de instalação |
| author |
Piotrowski, Leonardo Jonas |
| author_facet |
Piotrowski, Leonardo Jonas |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Farret, Felix Alberto http://lattes.cnpq.br/5783619992936443 Roque, Alexandre dos Santos Bernardon, Daniel Pinheiro Figueiró, Iuri Castro Naidon, Thiago Cattani |
| dc.contributor.author.fl_str_mv |
Piotrowski, Leonardo Jonas |
| dc.subject.por.fl_str_mv |
Inteligência artificial Geração de energia fotovoltaica Degradação da potência de saída fotovoltaica Aprendizado profundo de máquina Topologias de instalação fotovoltaica Artificial intelligence Photovoltaic power generation forecast Photovoltaic output power degradation Deep learning Photovoltaic installation topologies CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| topic |
Inteligência artificial Geração de energia fotovoltaica Degradação da potência de saída fotovoltaica Aprendizado profundo de máquina Topologias de instalação fotovoltaica Artificial intelligence Photovoltaic power generation forecast Photovoltaic output power degradation Deep learning Photovoltaic installation topologies CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
| description |
Solar energy is used worldwide to generate electricity with photovoltaic (PV) panels and is one of the fastest growing alternatives that contributes to meet the global energy demand. Among some of the factors that make this type of electricity generation an excellent alternative is the fact that it is a renewable, noise-free and universal source. There are several types of installation (topologies) for photovoltaic modules, such as using solar tracking, cooling and the traditional fixed topology that can be commonly used in photovoltaic plants installed on the ground and/or on rooftops. In all related projects, it is important to carry out an initial planning that adequately meets the demand for electricity and the return on investments involved, regardless of the installation topology. Among the various factors, and one of the most important, is the forecast of the energy generation that the installation will be able to provide. In this sense, this study addresses planning that consists of applying artificial intelligence (AI) considering the prediction of solar irradiance, durability and performance of modules in different installation topologies. Knowing that the degradation of the panel output power can assume different values, it needs to be estimated and accounted for in order to adequately model the prediction of the generated energy, providing greater reliability and availability of photovoltaic generators. In this thesis, AI contributed to a better planning of PV installations in two aspects. On the one hand, deep machine learning was applied in the training of a neural network to make it capable of predicting solar irradiance and, on the other hand, fuzzy logic was applied to find the degradation of the panel installed under different topologies. In short, this modeling consisted of collecting a history of solar irradiation data, processing this data and inserting it into a recurrent neural network (RNN) with long and short-term memory (LSTM) to perform the prediction. Fuzzy logic together with technical information about the modules and the type of topology used was applied to find out the degradation and, consequently, the prediction of the electrical output power. Several computational simulations were performed to adjust the developed model. The financial aspects of the PV topologies studied here were accounted for to verify the economic viability. The results obtained showed that both topologies are viable and, although the solar tracking topology results in greater degradation in relation to the others, it still compensates for the greater amount of electricity generated in the analyzed period. The prediction of solar irradiance reached a satisfactory accuracy compared to other methods listed in this thesis. In addition, the predicted solar irradiance was validated with real data obtained for the city of Santa Maria, RS, Brazil. A reduction in prediction error associated with a better understanding of PV panel durability contributed to a more reliable planning of different installation topologies. |
| publishDate |
2024 |
| dc.date.none.fl_str_mv |
2024-08-26 2025-01-21T13:32:05Z 2025-01-21T13:32:05Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/33907 |
| dc.identifier.dark.fl_str_mv |
ark:/26339/001300001bb4g |
| url |
http://repositorio.ufsm.br/handle/1/33907 |
| identifier_str_mv |
ark:/26339/001300001bb4g |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica Centro de Tecnologia |
| publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica Centro de Tecnologia |
| dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
| instname_str |
Universidade Federal de Santa Maria (UFSM) |
| instacron_str |
UFSM |
| institution |
UFSM |
| reponame_str |
Manancial - Repositório Digital da UFSM |
| collection |
Manancial - Repositório Digital da UFSM |
| repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
| repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br |
| _version_ |
1847103568429973504 |