Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Master thesis |
Language: | por |
Source: | Manancial - Repositório Digital da UFSM |
dARK ID: | ark:/26339/0013000003kfs |
Download full: | http://repositorio.ufsm.br/handle/1/19743 |
Summary: | Competitiveness and the insertion of new technologies in the electricity sector now condition companies to find ways to improve the quality of their services and ensure profitability. The short-term load forecasting activity is indispensable to support the planning and operation of electrical systems, aiming to make the energy supply stable and reliable. To perform load prediction using Artificial Neural Networks (ANN), it is necessary to evaluate the variables involved in the behavior of the daily load curve. By evaluating and obtaining the most available variables influencing the load behavior, it is then possible to use them as input to the adopted ANN model. Artificial neural networks are computational models inspired by the simplification of the functioning of biological neurons, with the ability to learn from experience with system inputs. They are similar to the brain due to the characteristics of knowledge acquired by a learning process and connections between its neurons used to store the acquired knowledge. A neural network has high power to generalize information after a learning phase, allowing to capture functional relationships between data producing output close to the expected. The process of learning or training the network consists in the application of ordered steps necessary for the tuning of the synaptic weights and thresholds of their neurons, aiming to produce the generalization of solutions by their outputs. The goal of network training is to make the application of a set of inputs a set of desired outputs. The tools using artificial intelligence techniques have been improved, allowing their application in various areas of knowledge, standing out among the main techniques used to perform short-term load forecasting, and are currently widely researched and employed for this purpose. Thus, its use has been showing more accurate results compared to traditional methods, since they can better develop the required mathematical processing. This paper presents a proposal for the prediction of the daily load curve for one day ahead applied to real energy, demand and temperature data, since it is the variables that best represent the short-term load behavior; For this, a model developed with multilayer perceptron neural networks using the Levenberg-Marquardt learning algorithm was implemented. The results found were satisfactory and acceptable compared to those presented in the literature review, being sufficient for practical application meeting the proposal of this work. |
id |
UFSM_38a74ce7dfbbe4eb845aa0385969fb93 |
---|---|
oai_identifier_str |
oai:repositorio.ufsm.br:1/19743 |
network_acronym_str |
UFSM |
network_name_str |
Manancial - Repositório Digital da UFSM |
repository_id_str |
|
spelling |
Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neuraisMethodology for short-term horizon load forecasting using neural networksPrevisão de cargaRedes neurais artificiaisCurto prazoLoad forecastArtificial neural networksShort termCNPQ::ENGENHARIAS::ENGENHARIA ELETRICACompetitiveness and the insertion of new technologies in the electricity sector now condition companies to find ways to improve the quality of their services and ensure profitability. The short-term load forecasting activity is indispensable to support the planning and operation of electrical systems, aiming to make the energy supply stable and reliable. To perform load prediction using Artificial Neural Networks (ANN), it is necessary to evaluate the variables involved in the behavior of the daily load curve. By evaluating and obtaining the most available variables influencing the load behavior, it is then possible to use them as input to the adopted ANN model. Artificial neural networks are computational models inspired by the simplification of the functioning of biological neurons, with the ability to learn from experience with system inputs. They are similar to the brain due to the characteristics of knowledge acquired by a learning process and connections between its neurons used to store the acquired knowledge. A neural network has high power to generalize information after a learning phase, allowing to capture functional relationships between data producing output close to the expected. The process of learning or training the network consists in the application of ordered steps necessary for the tuning of the synaptic weights and thresholds of their neurons, aiming to produce the generalization of solutions by their outputs. The goal of network training is to make the application of a set of inputs a set of desired outputs. The tools using artificial intelligence techniques have been improved, allowing their application in various areas of knowledge, standing out among the main techniques used to perform short-term load forecasting, and are currently widely researched and employed for this purpose. Thus, its use has been showing more accurate results compared to traditional methods, since they can better develop the required mathematical processing. This paper presents a proposal for the prediction of the daily load curve for one day ahead applied to real energy, demand and temperature data, since it is the variables that best represent the short-term load behavior; For this, a model developed with multilayer perceptron neural networks using the Levenberg-Marquardt learning algorithm was implemented. The results found were satisfactory and acceptable compared to those presented in the literature review, being sufficient for practical application meeting the proposal of this work.Atualmente a competividade e a inserção de novas tecnologias no setor elétrico condicionam empresas a encontrar formas de melhorar a qualidade da prestação dos seus serviços e garantir lucratividade. A atividade de previsão de carga no curto prazo é indispensável para subsidiar o planejamento e a operação dos sistemas elétricos, visando tornar a oferta de energia estável e confiável. Para realizar a previsão de carga utilizando Redes Neurais Artificiais (RNA) é necessário avaliar as variáveis envolvidas no comportamento da curva de carga diária. Através da avaliação e obtenção das variáveis disponíveis mais influentes no comportamento da carga, é possível então utiliza-las como entrada do modelo RNA adotado. As redes neurais artificias são modelos computacionais inspirados na simplificação do funcionamento dos neurônios biológicos, com a capacidade de aprendizado a partir da experiência com as entradas do sistema. São semelhantes ao cérebro devido às características de conhecimento adquirido por um processo de aprendizagem e conexões entre seus neurônios utilizadas para armazenar o conhecimento adquirido. Uma rede neural possuiu alto poder de generalizar informações após uma fase de aprendizagem, possibilitando capturar relações funcionais entre os dados produzindo uma saída próxima daquela esperada. O processo de aprendizagem ou treinamento da rede consiste na aplicação de etapas ordenadas necessárias para que ocorra a sintonização dos pesos sinápticos e limiares de seus neurônios, visando à produção da generalização de soluções pelas suas saídas. O objetivo do treinamento da rede é tornar a aplicação de um conjunto de entradas em um conjunto de saídas desejadas. As ferramentas utilizando as técnicas de inteligência artificial vêm sendo aperfeiçoadas, permitindo a sua aplicação em diversas áreas do conhecimento, se destacando entre as principais técnicas utilizadas para realizar previsão de carga no curto prazo, sendo atualmente muito pesquisadas e empregadas para este fim. Desse modo, a sua utilização vem demonstrando resultados mais acurados em relação aos métodos tradicionais, pois conseguem desenvolver de melhor forma o processamento matemático requerido. Este trabalho apresenta uma proposta de previsão da curva de carga diária para um dia à frente aplicado a dados reais de energia, demanda e temperatura, pois são as variáveis que melhor representam o comportamento da carga no curto prazo; para isto foi implementado um modelo desenvolvido com redes neurais perceptron de múltiplas camadas, utilizando o algoritmo de aprendizagem Levenberg- Marquardt. Os resultados encontrados foram satisfatórios e aceitáveis comparados aos apresentados na revisão bibliográfica, sendo suficientes para aplicação prática atendendo a proposta deste trabalho.Universidade Federal de Santa MariaBrasilEngenharia ElétricaUFSMPrograma de Pós-Graduação em Engenharia ElétricaCentro de TecnologiaAbaide, Alzenira da Rosahttp://lattes.cnpq.br/2427825596072142Santos, Laura Lisiane Callai doshttp://lattes.cnpq.br/6337407524074990Campos, Maurício dehttp://lattes.cnpq.br/7207601062237405Milke, Tafarel Franco2020-03-05T18:16:09Z2020-03-05T18:16:09Z2019-08-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/19743ark:/26339/0013000003kfsporAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2020-03-06T06:01:30Zoai:repositorio.ufsm.br:1/19743Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2020-03-06T06:01:30Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false |
dc.title.none.fl_str_mv |
Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais Methodology for short-term horizon load forecasting using neural networks |
title |
Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais |
spellingShingle |
Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais Milke, Tafarel Franco Previsão de carga Redes neurais artificiais Curto prazo Load forecast Artificial neural networks Short term CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
title_short |
Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais |
title_full |
Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais |
title_fullStr |
Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais |
title_full_unstemmed |
Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais |
title_sort |
Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais |
author |
Milke, Tafarel Franco |
author_facet |
Milke, Tafarel Franco |
author_role |
author |
dc.contributor.none.fl_str_mv |
Abaide, Alzenira da Rosa http://lattes.cnpq.br/2427825596072142 Santos, Laura Lisiane Callai dos http://lattes.cnpq.br/6337407524074990 Campos, Maurício de http://lattes.cnpq.br/7207601062237405 |
dc.contributor.author.fl_str_mv |
Milke, Tafarel Franco |
dc.subject.por.fl_str_mv |
Previsão de carga Redes neurais artificiais Curto prazo Load forecast Artificial neural networks Short term CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
topic |
Previsão de carga Redes neurais artificiais Curto prazo Load forecast Artificial neural networks Short term CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA |
description |
Competitiveness and the insertion of new technologies in the electricity sector now condition companies to find ways to improve the quality of their services and ensure profitability. The short-term load forecasting activity is indispensable to support the planning and operation of electrical systems, aiming to make the energy supply stable and reliable. To perform load prediction using Artificial Neural Networks (ANN), it is necessary to evaluate the variables involved in the behavior of the daily load curve. By evaluating and obtaining the most available variables influencing the load behavior, it is then possible to use them as input to the adopted ANN model. Artificial neural networks are computational models inspired by the simplification of the functioning of biological neurons, with the ability to learn from experience with system inputs. They are similar to the brain due to the characteristics of knowledge acquired by a learning process and connections between its neurons used to store the acquired knowledge. A neural network has high power to generalize information after a learning phase, allowing to capture functional relationships between data producing output close to the expected. The process of learning or training the network consists in the application of ordered steps necessary for the tuning of the synaptic weights and thresholds of their neurons, aiming to produce the generalization of solutions by their outputs. The goal of network training is to make the application of a set of inputs a set of desired outputs. The tools using artificial intelligence techniques have been improved, allowing their application in various areas of knowledge, standing out among the main techniques used to perform short-term load forecasting, and are currently widely researched and employed for this purpose. Thus, its use has been showing more accurate results compared to traditional methods, since they can better develop the required mathematical processing. This paper presents a proposal for the prediction of the daily load curve for one day ahead applied to real energy, demand and temperature data, since it is the variables that best represent the short-term load behavior; For this, a model developed with multilayer perceptron neural networks using the Levenberg-Marquardt learning algorithm was implemented. The results found were satisfactory and acceptable compared to those presented in the literature review, being sufficient for practical application meeting the proposal of this work. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-08-28 2020-03-05T18:16:09Z 2020-03-05T18:16:09Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufsm.br/handle/1/19743 |
dc.identifier.dark.fl_str_mv |
ark:/26339/0013000003kfs |
url |
http://repositorio.ufsm.br/handle/1/19743 |
identifier_str_mv |
ark:/26339/0013000003kfs |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal de Santa Maria Brasil Engenharia Elétrica UFSM Programa de Pós-Graduação em Engenharia Elétrica Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Manancial - Repositório Digital da UFSM instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
instname_str |
Universidade Federal de Santa Maria (UFSM) |
instacron_str |
UFSM |
institution |
UFSM |
reponame_str |
Manancial - Repositório Digital da UFSM |
collection |
Manancial - Repositório Digital da UFSM |
repository.name.fl_str_mv |
Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM) |
repository.mail.fl_str_mv |
atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br |
_version_ |
1838453924889100288 |