Export Ready — 

Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais

Bibliographic Details
Main Author: Milke, Tafarel Franco
Publication Date: 2019
Format: Master thesis
Language: por
Source: Manancial - Repositório Digital da UFSM
dARK ID: ark:/26339/0013000003kfs
Download full: http://repositorio.ufsm.br/handle/1/19743
Summary: Competitiveness and the insertion of new technologies in the electricity sector now condition companies to find ways to improve the quality of their services and ensure profitability. The short-term load forecasting activity is indispensable to support the planning and operation of electrical systems, aiming to make the energy supply stable and reliable. To perform load prediction using Artificial Neural Networks (ANN), it is necessary to evaluate the variables involved in the behavior of the daily load curve. By evaluating and obtaining the most available variables influencing the load behavior, it is then possible to use them as input to the adopted ANN model. Artificial neural networks are computational models inspired by the simplification of the functioning of biological neurons, with the ability to learn from experience with system inputs. They are similar to the brain due to the characteristics of knowledge acquired by a learning process and connections between its neurons used to store the acquired knowledge. A neural network has high power to generalize information after a learning phase, allowing to capture functional relationships between data producing output close to the expected. The process of learning or training the network consists in the application of ordered steps necessary for the tuning of the synaptic weights and thresholds of their neurons, aiming to produce the generalization of solutions by their outputs. The goal of network training is to make the application of a set of inputs a set of desired outputs. The tools using artificial intelligence techniques have been improved, allowing their application in various areas of knowledge, standing out among the main techniques used to perform short-term load forecasting, and are currently widely researched and employed for this purpose. Thus, its use has been showing more accurate results compared to traditional methods, since they can better develop the required mathematical processing. This paper presents a proposal for the prediction of the daily load curve for one day ahead applied to real energy, demand and temperature data, since it is the variables that best represent the short-term load behavior; For this, a model developed with multilayer perceptron neural networks using the Levenberg-Marquardt learning algorithm was implemented. The results found were satisfactory and acceptable compared to those presented in the literature review, being sufficient for practical application meeting the proposal of this work.
id UFSM_38a74ce7dfbbe4eb845aa0385969fb93
oai_identifier_str oai:repositorio.ufsm.br:1/19743
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neuraisMethodology for short-term horizon load forecasting using neural networksPrevisão de cargaRedes neurais artificiaisCurto prazoLoad forecastArtificial neural networksShort termCNPQ::ENGENHARIAS::ENGENHARIA ELETRICACompetitiveness and the insertion of new technologies in the electricity sector now condition companies to find ways to improve the quality of their services and ensure profitability. The short-term load forecasting activity is indispensable to support the planning and operation of electrical systems, aiming to make the energy supply stable and reliable. To perform load prediction using Artificial Neural Networks (ANN), it is necessary to evaluate the variables involved in the behavior of the daily load curve. By evaluating and obtaining the most available variables influencing the load behavior, it is then possible to use them as input to the adopted ANN model. Artificial neural networks are computational models inspired by the simplification of the functioning of biological neurons, with the ability to learn from experience with system inputs. They are similar to the brain due to the characteristics of knowledge acquired by a learning process and connections between its neurons used to store the acquired knowledge. A neural network has high power to generalize information after a learning phase, allowing to capture functional relationships between data producing output close to the expected. The process of learning or training the network consists in the application of ordered steps necessary for the tuning of the synaptic weights and thresholds of their neurons, aiming to produce the generalization of solutions by their outputs. The goal of network training is to make the application of a set of inputs a set of desired outputs. The tools using artificial intelligence techniques have been improved, allowing their application in various areas of knowledge, standing out among the main techniques used to perform short-term load forecasting, and are currently widely researched and employed for this purpose. Thus, its use has been showing more accurate results compared to traditional methods, since they can better develop the required mathematical processing. This paper presents a proposal for the prediction of the daily load curve for one day ahead applied to real energy, demand and temperature data, since it is the variables that best represent the short-term load behavior; For this, a model developed with multilayer perceptron neural networks using the Levenberg-Marquardt learning algorithm was implemented. The results found were satisfactory and acceptable compared to those presented in the literature review, being sufficient for practical application meeting the proposal of this work.Atualmente a competividade e a inserção de novas tecnologias no setor elétrico condicionam empresas a encontrar formas de melhorar a qualidade da prestação dos seus serviços e garantir lucratividade. A atividade de previsão de carga no curto prazo é indispensável para subsidiar o planejamento e a operação dos sistemas elétricos, visando tornar a oferta de energia estável e confiável. Para realizar a previsão de carga utilizando Redes Neurais Artificiais (RNA) é necessário avaliar as variáveis envolvidas no comportamento da curva de carga diária. Através da avaliação e obtenção das variáveis disponíveis mais influentes no comportamento da carga, é possível então utiliza-las como entrada do modelo RNA adotado. As redes neurais artificias são modelos computacionais inspirados na simplificação do funcionamento dos neurônios biológicos, com a capacidade de aprendizado a partir da experiência com as entradas do sistema. São semelhantes ao cérebro devido às características de conhecimento adquirido por um processo de aprendizagem e conexões entre seus neurônios utilizadas para armazenar o conhecimento adquirido. Uma rede neural possuiu alto poder de generalizar informações após uma fase de aprendizagem, possibilitando capturar relações funcionais entre os dados produzindo uma saída próxima daquela esperada. O processo de aprendizagem ou treinamento da rede consiste na aplicação de etapas ordenadas necessárias para que ocorra a sintonização dos pesos sinápticos e limiares de seus neurônios, visando à produção da generalização de soluções pelas suas saídas. O objetivo do treinamento da rede é tornar a aplicação de um conjunto de entradas em um conjunto de saídas desejadas. As ferramentas utilizando as técnicas de inteligência artificial vêm sendo aperfeiçoadas, permitindo a sua aplicação em diversas áreas do conhecimento, se destacando entre as principais técnicas utilizadas para realizar previsão de carga no curto prazo, sendo atualmente muito pesquisadas e empregadas para este fim. Desse modo, a sua utilização vem demonstrando resultados mais acurados em relação aos métodos tradicionais, pois conseguem desenvolver de melhor forma o processamento matemático requerido. Este trabalho apresenta uma proposta de previsão da curva de carga diária para um dia à frente aplicado a dados reais de energia, demanda e temperatura, pois são as variáveis que melhor representam o comportamento da carga no curto prazo; para isto foi implementado um modelo desenvolvido com redes neurais perceptron de múltiplas camadas, utilizando o algoritmo de aprendizagem Levenberg- Marquardt. Os resultados encontrados foram satisfatórios e aceitáveis comparados aos apresentados na revisão bibliográfica, sendo suficientes para aplicação prática atendendo a proposta deste trabalho.Universidade Federal de Santa MariaBrasilEngenharia ElétricaUFSMPrograma de Pós-Graduação em Engenharia ElétricaCentro de TecnologiaAbaide, Alzenira da Rosahttp://lattes.cnpq.br/2427825596072142Santos, Laura Lisiane Callai doshttp://lattes.cnpq.br/6337407524074990Campos, Maurício dehttp://lattes.cnpq.br/7207601062237405Milke, Tafarel Franco2020-03-05T18:16:09Z2020-03-05T18:16:09Z2019-08-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/19743ark:/26339/0013000003kfsporAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2020-03-06T06:01:30Zoai:repositorio.ufsm.br:1/19743Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2020-03-06T06:01:30Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais
Methodology for short-term horizon load forecasting using neural networks
title Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais
spellingShingle Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais
Milke, Tafarel Franco
Previsão de carga
Redes neurais artificiais
Curto prazo
Load forecast
Artificial neural networks
Short term
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais
title_full Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais
title_fullStr Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais
title_full_unstemmed Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais
title_sort Metodologia para previsão de carga no horizonte de curto prazo utilizando redes neurais
author Milke, Tafarel Franco
author_facet Milke, Tafarel Franco
author_role author
dc.contributor.none.fl_str_mv Abaide, Alzenira da Rosa
http://lattes.cnpq.br/2427825596072142
Santos, Laura Lisiane Callai dos
http://lattes.cnpq.br/6337407524074990
Campos, Maurício de
http://lattes.cnpq.br/7207601062237405
dc.contributor.author.fl_str_mv Milke, Tafarel Franco
dc.subject.por.fl_str_mv Previsão de carga
Redes neurais artificiais
Curto prazo
Load forecast
Artificial neural networks
Short term
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Previsão de carga
Redes neurais artificiais
Curto prazo
Load forecast
Artificial neural networks
Short term
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description Competitiveness and the insertion of new technologies in the electricity sector now condition companies to find ways to improve the quality of their services and ensure profitability. The short-term load forecasting activity is indispensable to support the planning and operation of electrical systems, aiming to make the energy supply stable and reliable. To perform load prediction using Artificial Neural Networks (ANN), it is necessary to evaluate the variables involved in the behavior of the daily load curve. By evaluating and obtaining the most available variables influencing the load behavior, it is then possible to use them as input to the adopted ANN model. Artificial neural networks are computational models inspired by the simplification of the functioning of biological neurons, with the ability to learn from experience with system inputs. They are similar to the brain due to the characteristics of knowledge acquired by a learning process and connections between its neurons used to store the acquired knowledge. A neural network has high power to generalize information after a learning phase, allowing to capture functional relationships between data producing output close to the expected. The process of learning or training the network consists in the application of ordered steps necessary for the tuning of the synaptic weights and thresholds of their neurons, aiming to produce the generalization of solutions by their outputs. The goal of network training is to make the application of a set of inputs a set of desired outputs. The tools using artificial intelligence techniques have been improved, allowing their application in various areas of knowledge, standing out among the main techniques used to perform short-term load forecasting, and are currently widely researched and employed for this purpose. Thus, its use has been showing more accurate results compared to traditional methods, since they can better develop the required mathematical processing. This paper presents a proposal for the prediction of the daily load curve for one day ahead applied to real energy, demand and temperature data, since it is the variables that best represent the short-term load behavior; For this, a model developed with multilayer perceptron neural networks using the Levenberg-Marquardt learning algorithm was implemented. The results found were satisfactory and acceptable compared to those presented in the literature review, being sufficient for practical application meeting the proposal of this work.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-28
2020-03-05T18:16:09Z
2020-03-05T18:16:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/19743
dc.identifier.dark.fl_str_mv ark:/26339/0013000003kfs
url http://repositorio.ufsm.br/handle/1/19743
identifier_str_mv ark:/26339/0013000003kfs
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Elétrica
UFSM
Programa de Pós-Graduação em Engenharia Elétrica
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1838453924889100288