Productive capacity classification with heights of dominant trees estimated by ANN

Bibliographic Details
Main Author: Leite, Marcos Vinicius Santana
Publication Date: 2022
Other Authors: Cabacinha, Christian Dias, Assis, Adriana Leandra
Format: Article
Language: por
Source: Ciência Florestal (Online)
DOI: 10.5902/1980509867120
Download full: https://periodicos.ufsm.br/cienciaflorestal/article/view/67120
Summary: The generation of site curves built from modeling the height of dominant trees measured in permanent plots at different ages considering a reference age constitutes the most practical and widespread method to classify the local productive capacity. Within a Forest Planning process, the assertiveness of the generated curves has quantitative and qualitative consequences in the allocation of resources, so that the continuous improvement of classification methods is of paramount importance. This study aimed to propose models of Artificial Neural Networks (ANN) to estimate the height of dominant eucalyptus trees, and apply them in the generation of site curves using the guide curve method, as an alternative to non-linear and assess the accuracy of estimates and stability of the classification of local productive capacity generated by these approaches. The data used are from measurements of 8,819 permanent plots installed in clonal stands of Eucalyptus urophylla × Eucalyptus grandis. Five classical non-linear models were fitted and the ANN were trained with two algorithms: Feed Forward Back Propagation Network (FFBP) and Cascade Forward Back Propagation Network (CFBP). In general, when only the age of the plots was used to estimate the dominant height, there was no difference in the results between the ANN trained with the two algorithms and the non-linear models. However, with the addition of new stand variables during ANN training, there was an improvement in estimates of dominant heights and generated a 13% more stable productive capacity classification compared to non-linear regression models.
id UFSM-6_6f754eae525a9a7ecf5f33f35a58d92d
oai_identifier_str oai:ojs.pkp.sfu.ca:article/67120
network_acronym_str UFSM-6
network_name_str Ciência Florestal (Online)
spelling Productive capacity classification with heights of dominant trees estimated by ANNClassificação da capacidade produtiva com alturas de árvores dominantes estimadas por RNAInteligência artificialsítios florestaisFeed Forward Back Propagation NetworkCascade Forward Back Propagation NetworkArtificial intelligenceForest sitesFeed Forward Back Propagation NetworkCascade Forward Back Propagation NetworkThe generation of site curves built from modeling the height of dominant trees measured in permanent plots at different ages considering a reference age constitutes the most practical and widespread method to classify the local productive capacity. Within a Forest Planning process, the assertiveness of the generated curves has quantitative and qualitative consequences in the allocation of resources, so that the continuous improvement of classification methods is of paramount importance. This study aimed to propose models of Artificial Neural Networks (ANN) to estimate the height of dominant eucalyptus trees, and apply them in the generation of site curves using the guide curve method, as an alternative to non-linear and assess the accuracy of estimates and stability of the classification of local productive capacity generated by these approaches. The data used are from measurements of 8,819 permanent plots installed in clonal stands of Eucalyptus urophylla × Eucalyptus grandis. Five classical non-linear models were fitted and the ANN were trained with two algorithms: Feed Forward Back Propagation Network (FFBP) and Cascade Forward Back Propagation Network (CFBP). In general, when only the age of the plots was used to estimate the dominant height, there was no difference in the results between the ANN trained with the two algorithms and the non-linear models. However, with the addition of new stand variables during ANN training, there was an improvement in estimates of dominant heights and generated a 13% more stable productive capacity classification compared to non-linear regression models.A construção de curvas de sítio a partir da modelagem da altura de árvores dominantes medidas em parcelas permanentes em diferentes idades, considerando uma idade de referência, se constitui no método mais prático e difundido no meio florestal para classificar a capacidade produtiva local. Dentro de um processo de Planejamento Florestal, o grau de assertividade das curvas geradas tem consequências quantitativas e qualitativas na alocação de recursos, de forma que a melhoria contínua dos métodos de classificação é de suma importância. Este estudo teve como objetivo propor o uso de modelos de Redes Neurais Artificiais (RNA) para estimar a altura de árvores dominantes de eucalipto, e aplicá-los na geração de curvas de sítio utilizando o método da curva guia, como uma alternativa aos modelos tradicionais de regressão não-linear, avaliando a precisão das estimativas e a estabilidade da classificação da capacidade produtiva local gerada por essas abordagens. Os dados utilizados foram provenientes das medições de 8.819 parcelas permanentes instaladas em povoamentos clonais de Eucalyptus urophylla × Eucalyptus grandis. Foram ajustados cinco modelos não lineares clássicos e as RNA foram treinadas com dois algoritmos: Feed Forward Back Propagation Network (FFBP) e Cascade Forward Back Propagation Network (CFBP). Os resultados mostraram que, de maneira geral, quando utilizada somente a idade das parcelas para estimativa da altura dominante, não houve diferença nos resultados entre as RNA treinadas com os dois algoritmos e os modelos não lineares. Contudo, com adição de novas variáveis do povoamento durante o treinamento das RNA, houve uma melhora nas estimativas das alturas dominantes e gerou uma classificação da capacidade produtiva 13% mais estável se comparada aos modelos de regressão não linear.Universidade Federal de Santa Maria2022-09-22info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdftext/xmlhttps://periodicos.ufsm.br/cienciaflorestal/article/view/6712010.5902/1980509867120Ciência Florestal; Vol. 32 No. 3 (2022); 1552-1574Ciência Florestal; v. 32 n. 3 (2022); 1552-15741980-50980103-9954reponame:Ciência Florestal (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaflorestal/article/view/67120/48995https://periodicos.ufsm.br/cienciaflorestal/article/view/67120/50961Copyright (c) 2022 Ciência Florestalhttp://creativecommons.org/licenses/by-nc/4.0info:eu-repo/semantics/openAccessLeite, Marcos Vinicius SantanaCabacinha, Christian DiasAssis, Adriana Leandra2022-12-29T18:27:50Zoai:ojs.pkp.sfu.ca:article/67120Revistahttp://www.ufsm.br/cienciaflorestal/ONGhttps://old.scielo.br/oai/scielo-oai.php||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br1980-50980103-9954opendoar:2022-12-29T18:27:50Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Productive capacity classification with heights of dominant trees estimated by ANN
Classificação da capacidade produtiva com alturas de árvores dominantes estimadas por RNA
title Productive capacity classification with heights of dominant trees estimated by ANN
spellingShingle Productive capacity classification with heights of dominant trees estimated by ANN
Productive capacity classification with heights of dominant trees estimated by ANN
Leite, Marcos Vinicius Santana
Inteligência artificial
sítios florestais
Feed Forward Back Propagation Network
Cascade Forward Back Propagation Network
Artificial intelligence
Forest sites
Feed Forward Back Propagation Network
Cascade Forward Back Propagation Network
Leite, Marcos Vinicius Santana
Inteligência artificial
sítios florestais
Feed Forward Back Propagation Network
Cascade Forward Back Propagation Network
Artificial intelligence
Forest sites
Feed Forward Back Propagation Network
Cascade Forward Back Propagation Network
title_short Productive capacity classification with heights of dominant trees estimated by ANN
title_full Productive capacity classification with heights of dominant trees estimated by ANN
title_fullStr Productive capacity classification with heights of dominant trees estimated by ANN
Productive capacity classification with heights of dominant trees estimated by ANN
title_full_unstemmed Productive capacity classification with heights of dominant trees estimated by ANN
Productive capacity classification with heights of dominant trees estimated by ANN
title_sort Productive capacity classification with heights of dominant trees estimated by ANN
author Leite, Marcos Vinicius Santana
author_facet Leite, Marcos Vinicius Santana
Leite, Marcos Vinicius Santana
Cabacinha, Christian Dias
Assis, Adriana Leandra
Cabacinha, Christian Dias
Assis, Adriana Leandra
author_role author
author2 Cabacinha, Christian Dias
Assis, Adriana Leandra
author2_role author
author
dc.contributor.author.fl_str_mv Leite, Marcos Vinicius Santana
Cabacinha, Christian Dias
Assis, Adriana Leandra
dc.subject.por.fl_str_mv Inteligência artificial
sítios florestais
Feed Forward Back Propagation Network
Cascade Forward Back Propagation Network
Artificial intelligence
Forest sites
Feed Forward Back Propagation Network
Cascade Forward Back Propagation Network
topic Inteligência artificial
sítios florestais
Feed Forward Back Propagation Network
Cascade Forward Back Propagation Network
Artificial intelligence
Forest sites
Feed Forward Back Propagation Network
Cascade Forward Back Propagation Network
description The generation of site curves built from modeling the height of dominant trees measured in permanent plots at different ages considering a reference age constitutes the most practical and widespread method to classify the local productive capacity. Within a Forest Planning process, the assertiveness of the generated curves has quantitative and qualitative consequences in the allocation of resources, so that the continuous improvement of classification methods is of paramount importance. This study aimed to propose models of Artificial Neural Networks (ANN) to estimate the height of dominant eucalyptus trees, and apply them in the generation of site curves using the guide curve method, as an alternative to non-linear and assess the accuracy of estimates and stability of the classification of local productive capacity generated by these approaches. The data used are from measurements of 8,819 permanent plots installed in clonal stands of Eucalyptus urophylla × Eucalyptus grandis. Five classical non-linear models were fitted and the ANN were trained with two algorithms: Feed Forward Back Propagation Network (FFBP) and Cascade Forward Back Propagation Network (CFBP). In general, when only the age of the plots was used to estimate the dominant height, there was no difference in the results between the ANN trained with the two algorithms and the non-linear models. However, with the addition of new stand variables during ANN training, there was an improvement in estimates of dominant heights and generated a 13% more stable productive capacity classification compared to non-linear regression models.
publishDate 2022
dc.date.none.fl_str_mv 2022-09-22
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/67120
10.5902/1980509867120
url https://periodicos.ufsm.br/cienciaflorestal/article/view/67120
identifier_str_mv 10.5902/1980509867120
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaflorestal/article/view/67120/48995
https://periodicos.ufsm.br/cienciaflorestal/article/view/67120/50961
dc.rights.driver.fl_str_mv Copyright (c) 2022 Ciência Florestal
http://creativecommons.org/licenses/by-nc/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2022 Ciência Florestal
http://creativecommons.org/licenses/by-nc/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/xml
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência Florestal; Vol. 32 No. 3 (2022); 1552-1574
Ciência Florestal; v. 32 n. 3 (2022); 1552-1574
1980-5098
0103-9954
reponame:Ciência Florestal (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Ciência Florestal (Online)
collection Ciência Florestal (Online)
repository.name.fl_str_mv Ciência Florestal (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv ||cienciaflorestal@ufsm.br|| cienciaflorestal@gmail.com|| cf@smail.ufsm.br
_version_ 1822181497238454272
dc.identifier.doi.none.fl_str_mv 10.5902/1980509867120