Export Ready — 

ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY

Bibliographic Details
Main Author: Rodríguez, Lissette Guzmán
Publication Date: 2016
Other Authors: Anabor, Vagner, Puhales, Franciano Scremin, Piva, Everson Dal
Format: Article
Language: por
Source: Revista Ciência e Natura (Online)
Download full: https://periodicos.ufsm.br/cienciaenatura/article/view/20193
Summary: In this paper was  used the  kernel density estimation (KDE),  a nonparametric method to estimate the probability density function of a random variable, to obtain a probabilistic  precipitation forecast, from an ensemble prediction with the  WRF model. The nine members of the prediction were obtained by varying the convective parameterization of the model, for a heavy precipitation event in southern Brazil. Evaluating the results, the estimated probabilities  obtained for periods of 3 and 24 hours, and various thresholds of precipitation, were compared with the estimated precipitation of the TRMM, without showing a clear morphological correspondence between them. For  accumulated in 24 hours, it was possible to compare the specific values of the observations of INMET, finding better coherence between the observations and the predicted probabilities. Skill scores were calculated from contingency tables,  for different ranks of probabilities, and the forecast of heavy rain had higher proportion correct in all ranks of probabilities, and forecasted precipitation with probability of 75%, for any threshold, did not produce false alarms. Furthermore, the precipitation of lower intensity with marginal probability was over-forecasted, showing also higher index of false alarms.
id UFSM-23_bfaffd151bc6ccc0fa2e4dd2cbd1fe09
oai_identifier_str oai:ojs.pkp.sfu.ca:article/20193
network_acronym_str UFSM-23
network_name_str Revista Ciência e Natura (Online)
repository_id_str
spelling ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDYEstimativa da Probabilidade de Ocorrência de Precipitação, a partir de Técnicas Estatísticas não Paramétricas Aplicadas a Simulações Numéricas de WRF. Um caso de estudoKDE. Probabilistic forecast. Heavy rainfall.KDE. Previsão probabilística. Precipitação intensa.In this paper was  used the  kernel density estimation (KDE),  a nonparametric method to estimate the probability density function of a random variable, to obtain a probabilistic  precipitation forecast, from an ensemble prediction with the  WRF model. The nine members of the prediction were obtained by varying the convective parameterization of the model, for a heavy precipitation event in southern Brazil. Evaluating the results, the estimated probabilities  obtained for periods of 3 and 24 hours, and various thresholds of precipitation, were compared with the estimated precipitation of the TRMM, without showing a clear morphological correspondence between them. For  accumulated in 24 hours, it was possible to compare the specific values of the observations of INMET, finding better coherence between the observations and the predicted probabilities. Skill scores were calculated from contingency tables,  for different ranks of probabilities, and the forecast of heavy rain had higher proportion correct in all ranks of probabilities, and forecasted precipitation with probability of 75%, for any threshold, did not produce false alarms. Furthermore, the precipitation of lower intensity with marginal probability was over-forecasted, showing also higher index of false alarms.No presente trabalho emprega-se a estimativa da densidade do kernel (KDE), um método não-paramétrico, para estimar a função densidade de probabilidade de uma variável aleatória, na obtenção de um prognóstico probabilístico de precipitação, a partir de uma previsão por conjunto do modelo WRF. Os nove membros da previsão por conjunto foram obtidos variando a parametrização convectiva do modelo, para um evento de precipitação intensa no sul do Brasil. Na avaliação dos resultados, os estimados de probabilidade obtidos para períodos de 3 e 24 horas, e vários limiares de precipitação, foram comparados com os valores de precipitação estimada pelo TRMM, sem mostrar correspondência morfológica entre ambos. Para acumulados em 24 horas, foi possível comparar com os valores pontuais das observações do INMET, encontrando-se melhor coerência entre as observações e as probabilidades previstas. Foram calculadas medidas de desempenho a partir de tabelas de contingência, para diferentes intervalos de probabilidades, sendo que a previsão da chuva intensa teve maior proporção correta em todos os intervalos de probabilidades, e ao prever precipitação com 75% de probabilidade para qualquer acumulado, não ocorreram falsos alarmes. Além do mais, a precipitação de menor intensidade com probabilidade marginal foi sobre-prevista, apresentando maior índice de falsos alarmes.Universidade Federal de Santa Maria2016-07-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaenatura/article/view/2019310.5902/2179460X20193Ciência e Natura; Vol. 38 (2016): SPECIAL EDITION: IX WORKSHOP BRASILEIRO DE MICROMETEOROLOGIA; 491-497Ciência e Natura; v. 38 (2016): EDIÇÃO ESPECIAL: IX WORKSHOP BRASILEIRO DE MICROMETEOROLOGIA; 491-4972179-460X0100-8307reponame:Revista Ciência e Natura (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaenatura/article/view/20193/pdfCopyright (c) 2016 Ciência e Naturainfo:eu-repo/semantics/openAccessRodríguez, Lissette GuzmánAnabor, VagnerPuhales, Franciano ScreminPiva, Everson Dal2022-10-14T13:33:33Zoai:ojs.pkp.sfu.ca:article/20193Revistahttps://periodicos.ufsm.br/cienciaenatura/indexPUBhttps://periodicos.ufsm.br/cienciaenatura/oaicienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br2179-460X0100-8307opendoar:2022-10-14T13:33:33Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY
Estimativa da Probabilidade de Ocorrência de Precipitação, a partir de Técnicas Estatísticas não Paramétricas Aplicadas a Simulações Numéricas de WRF. Um caso de estudo
title ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY
spellingShingle ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY
Rodríguez, Lissette Guzmán
KDE. Probabilistic forecast. Heavy rainfall.
KDE. Previsão probabilística. Precipitação intensa.
title_short ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY
title_full ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY
title_fullStr ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY
title_full_unstemmed ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY
title_sort ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY
author Rodríguez, Lissette Guzmán
author_facet Rodríguez, Lissette Guzmán
Anabor, Vagner
Puhales, Franciano Scremin
Piva, Everson Dal
author_role author
author2 Anabor, Vagner
Puhales, Franciano Scremin
Piva, Everson Dal
author2_role author
author
author
dc.contributor.author.fl_str_mv Rodríguez, Lissette Guzmán
Anabor, Vagner
Puhales, Franciano Scremin
Piva, Everson Dal
dc.subject.por.fl_str_mv KDE. Probabilistic forecast. Heavy rainfall.
KDE. Previsão probabilística. Precipitação intensa.
topic KDE. Probabilistic forecast. Heavy rainfall.
KDE. Previsão probabilística. Precipitação intensa.
description In this paper was  used the  kernel density estimation (KDE),  a nonparametric method to estimate the probability density function of a random variable, to obtain a probabilistic  precipitation forecast, from an ensemble prediction with the  WRF model. The nine members of the prediction were obtained by varying the convective parameterization of the model, for a heavy precipitation event in southern Brazil. Evaluating the results, the estimated probabilities  obtained for periods of 3 and 24 hours, and various thresholds of precipitation, were compared with the estimated precipitation of the TRMM, without showing a clear morphological correspondence between them. For  accumulated in 24 hours, it was possible to compare the specific values of the observations of INMET, finding better coherence between the observations and the predicted probabilities. Skill scores were calculated from contingency tables,  for different ranks of probabilities, and the forecast of heavy rain had higher proportion correct in all ranks of probabilities, and forecasted precipitation with probability of 75%, for any threshold, did not produce false alarms. Furthermore, the precipitation of lower intensity with marginal probability was over-forecasted, showing also higher index of false alarms.
publishDate 2016
dc.date.none.fl_str_mv 2016-07-20
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaenatura/article/view/20193
10.5902/2179460X20193
url https://periodicos.ufsm.br/cienciaenatura/article/view/20193
identifier_str_mv 10.5902/2179460X20193
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaenatura/article/view/20193/pdf
dc.rights.driver.fl_str_mv Copyright (c) 2016 Ciência e Natura
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2016 Ciência e Natura
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência e Natura; Vol. 38 (2016): SPECIAL EDITION: IX WORKSHOP BRASILEIRO DE MICROMETEOROLOGIA; 491-497
Ciência e Natura; v. 38 (2016): EDIÇÃO ESPECIAL: IX WORKSHOP BRASILEIRO DE MICROMETEOROLOGIA; 491-497
2179-460X
0100-8307
reponame:Revista Ciência e Natura (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Revista Ciência e Natura (Online)
collection Revista Ciência e Natura (Online)
repository.name.fl_str_mv Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv cienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br
_version_ 1839277880337498112