ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY
| Main Author: | |
|---|---|
| Publication Date: | 2016 |
| Other Authors: | , , |
| Format: | Article |
| Language: | por |
| Source: | Revista Ciência e Natura (Online) |
| Download full: | https://periodicos.ufsm.br/cienciaenatura/article/view/20193 |
Summary: | In this paper was used the kernel density estimation (KDE), a nonparametric method to estimate the probability density function of a random variable, to obtain a probabilistic precipitation forecast, from an ensemble prediction with the WRF model. The nine members of the prediction were obtained by varying the convective parameterization of the model, for a heavy precipitation event in southern Brazil. Evaluating the results, the estimated probabilities obtained for periods of 3 and 24 hours, and various thresholds of precipitation, were compared with the estimated precipitation of the TRMM, without showing a clear morphological correspondence between them. For accumulated in 24 hours, it was possible to compare the specific values of the observations of INMET, finding better coherence between the observations and the predicted probabilities. Skill scores were calculated from contingency tables, for different ranks of probabilities, and the forecast of heavy rain had higher proportion correct in all ranks of probabilities, and forecasted precipitation with probability of 75%, for any threshold, did not produce false alarms. Furthermore, the precipitation of lower intensity with marginal probability was over-forecasted, showing also higher index of false alarms. |
| id |
UFSM-23_bfaffd151bc6ccc0fa2e4dd2cbd1fe09 |
|---|---|
| oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/20193 |
| network_acronym_str |
UFSM-23 |
| network_name_str |
Revista Ciência e Natura (Online) |
| repository_id_str |
|
| spelling |
ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDYEstimativa da Probabilidade de Ocorrência de Precipitação, a partir de Técnicas Estatísticas não Paramétricas Aplicadas a Simulações Numéricas de WRF. Um caso de estudoKDE. Probabilistic forecast. Heavy rainfall.KDE. Previsão probabilística. Precipitação intensa.In this paper was used the kernel density estimation (KDE), a nonparametric method to estimate the probability density function of a random variable, to obtain a probabilistic precipitation forecast, from an ensemble prediction with the WRF model. The nine members of the prediction were obtained by varying the convective parameterization of the model, for a heavy precipitation event in southern Brazil. Evaluating the results, the estimated probabilities obtained for periods of 3 and 24 hours, and various thresholds of precipitation, were compared with the estimated precipitation of the TRMM, without showing a clear morphological correspondence between them. For accumulated in 24 hours, it was possible to compare the specific values of the observations of INMET, finding better coherence between the observations and the predicted probabilities. Skill scores were calculated from contingency tables, for different ranks of probabilities, and the forecast of heavy rain had higher proportion correct in all ranks of probabilities, and forecasted precipitation with probability of 75%, for any threshold, did not produce false alarms. Furthermore, the precipitation of lower intensity with marginal probability was over-forecasted, showing also higher index of false alarms.No presente trabalho emprega-se a estimativa da densidade do kernel (KDE), um método não-paramétrico, para estimar a função densidade de probabilidade de uma variável aleatória, na obtenção de um prognóstico probabilístico de precipitação, a partir de uma previsão por conjunto do modelo WRF. Os nove membros da previsão por conjunto foram obtidos variando a parametrização convectiva do modelo, para um evento de precipitação intensa no sul do Brasil. Na avaliação dos resultados, os estimados de probabilidade obtidos para períodos de 3 e 24 horas, e vários limiares de precipitação, foram comparados com os valores de precipitação estimada pelo TRMM, sem mostrar correspondência morfológica entre ambos. Para acumulados em 24 horas, foi possível comparar com os valores pontuais das observações do INMET, encontrando-se melhor coerência entre as observações e as probabilidades previstas. Foram calculadas medidas de desempenho a partir de tabelas de contingência, para diferentes intervalos de probabilidades, sendo que a previsão da chuva intensa teve maior proporção correta em todos os intervalos de probabilidades, e ao prever precipitação com 75% de probabilidade para qualquer acumulado, não ocorreram falsos alarmes. Além do mais, a precipitação de menor intensidade com probabilidade marginal foi sobre-prevista, apresentando maior índice de falsos alarmes.Universidade Federal de Santa Maria2016-07-20info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaenatura/article/view/2019310.5902/2179460X20193Ciência e Natura; Vol. 38 (2016): SPECIAL EDITION: IX WORKSHOP BRASILEIRO DE MICROMETEOROLOGIA; 491-497Ciência e Natura; v. 38 (2016): EDIÇÃO ESPECIAL: IX WORKSHOP BRASILEIRO DE MICROMETEOROLOGIA; 491-4972179-460X0100-8307reponame:Revista Ciência e Natura (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMporhttps://periodicos.ufsm.br/cienciaenatura/article/view/20193/pdfCopyright (c) 2016 Ciência e Naturainfo:eu-repo/semantics/openAccessRodríguez, Lissette GuzmánAnabor, VagnerPuhales, Franciano ScreminPiva, Everson Dal2022-10-14T13:33:33Zoai:ojs.pkp.sfu.ca:article/20193Revistahttps://periodicos.ufsm.br/cienciaenatura/indexPUBhttps://periodicos.ufsm.br/cienciaenatura/oaicienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br2179-460X0100-8307opendoar:2022-10-14T13:33:33Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)false |
| dc.title.none.fl_str_mv |
ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY Estimativa da Probabilidade de Ocorrência de Precipitação, a partir de Técnicas Estatísticas não Paramétricas Aplicadas a Simulações Numéricas de WRF. Um caso de estudo |
| title |
ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY |
| spellingShingle |
ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY Rodríguez, Lissette Guzmán KDE. Probabilistic forecast. Heavy rainfall. KDE. Previsão probabilística. Precipitação intensa. |
| title_short |
ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY |
| title_full |
ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY |
| title_fullStr |
ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY |
| title_full_unstemmed |
ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY |
| title_sort |
ESTIMATION OF RAINFALL PROBABILITY, THROUGH THE USE OF NON PARAMETRIC STATISTICAL TECHNIQUES, APPLIED TO NUMERICAL SIMULATIONS OF WRF. A CASE OF STUDY |
| author |
Rodríguez, Lissette Guzmán |
| author_facet |
Rodríguez, Lissette Guzmán Anabor, Vagner Puhales, Franciano Scremin Piva, Everson Dal |
| author_role |
author |
| author2 |
Anabor, Vagner Puhales, Franciano Scremin Piva, Everson Dal |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Rodríguez, Lissette Guzmán Anabor, Vagner Puhales, Franciano Scremin Piva, Everson Dal |
| dc.subject.por.fl_str_mv |
KDE. Probabilistic forecast. Heavy rainfall. KDE. Previsão probabilística. Precipitação intensa. |
| topic |
KDE. Probabilistic forecast. Heavy rainfall. KDE. Previsão probabilística. Precipitação intensa. |
| description |
In this paper was used the kernel density estimation (KDE), a nonparametric method to estimate the probability density function of a random variable, to obtain a probabilistic precipitation forecast, from an ensemble prediction with the WRF model. The nine members of the prediction were obtained by varying the convective parameterization of the model, for a heavy precipitation event in southern Brazil. Evaluating the results, the estimated probabilities obtained for periods of 3 and 24 hours, and various thresholds of precipitation, were compared with the estimated precipitation of the TRMM, without showing a clear morphological correspondence between them. For accumulated in 24 hours, it was possible to compare the specific values of the observations of INMET, finding better coherence between the observations and the predicted probabilities. Skill scores were calculated from contingency tables, for different ranks of probabilities, and the forecast of heavy rain had higher proportion correct in all ranks of probabilities, and forecasted precipitation with probability of 75%, for any threshold, did not produce false alarms. Furthermore, the precipitation of lower intensity with marginal probability was over-forecasted, showing also higher index of false alarms. |
| publishDate |
2016 |
| dc.date.none.fl_str_mv |
2016-07-20 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://periodicos.ufsm.br/cienciaenatura/article/view/20193 10.5902/2179460X20193 |
| url |
https://periodicos.ufsm.br/cienciaenatura/article/view/20193 |
| identifier_str_mv |
10.5902/2179460X20193 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.none.fl_str_mv |
https://periodicos.ufsm.br/cienciaenatura/article/view/20193/pdf |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2016 Ciência e Natura info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2016 Ciência e Natura |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
| publisher.none.fl_str_mv |
Universidade Federal de Santa Maria |
| dc.source.none.fl_str_mv |
Ciência e Natura; Vol. 38 (2016): SPECIAL EDITION: IX WORKSHOP BRASILEIRO DE MICROMETEOROLOGIA; 491-497 Ciência e Natura; v. 38 (2016): EDIÇÃO ESPECIAL: IX WORKSHOP BRASILEIRO DE MICROMETEOROLOGIA; 491-497 2179-460X 0100-8307 reponame:Revista Ciência e Natura (Online) instname:Universidade Federal de Santa Maria (UFSM) instacron:UFSM |
| instname_str |
Universidade Federal de Santa Maria (UFSM) |
| instacron_str |
UFSM |
| institution |
UFSM |
| reponame_str |
Revista Ciência e Natura (Online) |
| collection |
Revista Ciência e Natura (Online) |
| repository.name.fl_str_mv |
Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM) |
| repository.mail.fl_str_mv |
cienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br |
| _version_ |
1839277880337498112 |