Optimization of reinforced concrete structures using population-based metaheuristic algorithms

Bibliographic Details
Main Author: Amaral, Rodrigo Reis
Publication Date: 2023
Other Authors: Barazzutti, Lamartini Fontana, Gomes, Herbert Martins
Format: Article
Language: eng
Source: Revista Ciência e Natura (Online)
Download full: https://periodicos.ufsm.br/cienciaenatura/article/view/74927
Summary: For many industrial activities, ideal projects are achieved by comparing the solution of alternative projects with those already executed. The feasibility of solutions plays an important role in these activities. For example, the underlying objective (cost, profit, etc.) estimated for each project solution is calculated and the best solution is adopted. This is the usual procedure followed by many constructors due to time and resource limitations. However, in many cases, this method is followed simply by a lack of knowledge of existing optimization procedures. In this context, a comparative study of population-based metaheuristic algorithms applied to a case study of a reinforced concrete beam design reinforced with a polymer matrix with carbon fibers will be presented. Evolutionary algorithms have the ability to determine the optimal values of the design variables without disregarding the restrictions on ACI-318 and ACI-440 standards while minimizing the reinforcement area for each beam (cost). The comparative study shows that not all presented algorithms violated design constraints. In addition, it can be said that the values found for the design variables present a low dispersion around the mean value of the objective function.
id UFSM-23_29f3fcdd643dfb8f67b58ac3772134e4
oai_identifier_str oai:ojs.pkp.sfu.ca:article/74927
network_acronym_str UFSM-23
network_name_str Revista Ciência e Natura (Online)
repository_id_str
spelling Optimization of reinforced concrete structures using population-based metaheuristic algorithmsOtimização de estruturas de concreto armado empregando algoritmos metaheurísticos baseados em populaçõesConstrained OptimizationEvolutionary algorithmsReinforced concreteConcreto armadoOtimização com restriçõesAlgoritmos evolutivosFor many industrial activities, ideal projects are achieved by comparing the solution of alternative projects with those already executed. The feasibility of solutions plays an important role in these activities. For example, the underlying objective (cost, profit, etc.) estimated for each project solution is calculated and the best solution is adopted. This is the usual procedure followed by many constructors due to time and resource limitations. However, in many cases, this method is followed simply by a lack of knowledge of existing optimization procedures. In this context, a comparative study of population-based metaheuristic algorithms applied to a case study of a reinforced concrete beam design reinforced with a polymer matrix with carbon fibers will be presented. Evolutionary algorithms have the ability to determine the optimal values of the design variables without disregarding the restrictions on ACI-318 and ACI-440 standards while minimizing the reinforcement area for each beam (cost). The comparative study shows that not all presented algorithms violated design constraints. In addition, it can be said that the values found for the design variables present a low dispersion around the mean value of the objective function.Para muitas atividades industriais, os projetos ideais são alcançados comparando a solução de projetos alternativos com os já executados. A viabilidade de soluções desempenha um papel importante nessas atividades. Por exemplo, o objetivo subjacente (custo, lucro, etc.) estimado para cada solução de projeto é calculado e a melhor solução é adotada. Este é o procedimento usual seguido por muitos construtores devido às limitações de tempo e recursos. No entanto, em muitos casos, esse método é seguido simplesmente pela falta de conhecimento dos procedimentos de otimização existentes. Neste contexto, será apresentado um estudo comparativo de algoritmos metaheurísticos de base populacional aplicados a um estudo de caso de um projeto de viga de concreto armado reforçada com um material de matriz polimérica com fibras de carbono. Algoritmos evolutivos têm a capacidade de determinar os valores ótimos das variáveis de projeto sem desconsiderar as restrições das normas ACI-318 e ACI-440 enquanto minimiza a área da armadura de cada viga (custo). O estudo comparativo mostra que nem todos os algoritmos apresentados violaram as restrições de projeto. Além disso, pode-se dizer que os valores encontrados para as variáveis de projeto apresentam baixa dispersão em torno do valor médio da função objetivo.Universidade Federal de Santa Maria2023-12-01info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufsm.br/cienciaenatura/article/view/7492710.5902/2179460X74927Ciência e Natura; Vol. 45 No. esp. 3 (2023): ENMC/ECTM/MCSul/SEMENGO; e74927Ciência e Natura; v. 45 n. esp. 3 (2023): XXV ENMC - XIII ECTM - IX MCSul - IX SEMENGO; e749272179-460X0100-8307reponame:Revista Ciência e Natura (Online)instname:Universidade Federal de Santa Maria (UFSM)instacron:UFSMenghttps://periodicos.ufsm.br/cienciaenatura/article/view/74927/62408Copyright (c) 2023 Ciência e Naturainfo:eu-repo/semantics/openAccessAmaral, Rodrigo ReisBarazzutti, Lamartini FontanaGomes, Herbert Martins2024-02-26T14:55:32Zoai:ojs.pkp.sfu.ca:article/74927Revistahttps://periodicos.ufsm.br/cienciaenatura/indexPUBhttps://periodicos.ufsm.br/cienciaenatura/oaicienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br2179-460X0100-8307opendoar:2024-02-26T14:55:32Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Optimization of reinforced concrete structures using population-based metaheuristic algorithms
Otimização de estruturas de concreto armado empregando algoritmos metaheurísticos baseados em populações
title Optimization of reinforced concrete structures using population-based metaheuristic algorithms
spellingShingle Optimization of reinforced concrete structures using population-based metaheuristic algorithms
Amaral, Rodrigo Reis
Constrained Optimization
Evolutionary algorithms
Reinforced concrete
Concreto armado
Otimização com restrições
Algoritmos evolutivos
title_short Optimization of reinforced concrete structures using population-based metaheuristic algorithms
title_full Optimization of reinforced concrete structures using population-based metaheuristic algorithms
title_fullStr Optimization of reinforced concrete structures using population-based metaheuristic algorithms
title_full_unstemmed Optimization of reinforced concrete structures using population-based metaheuristic algorithms
title_sort Optimization of reinforced concrete structures using population-based metaheuristic algorithms
author Amaral, Rodrigo Reis
author_facet Amaral, Rodrigo Reis
Barazzutti, Lamartini Fontana
Gomes, Herbert Martins
author_role author
author2 Barazzutti, Lamartini Fontana
Gomes, Herbert Martins
author2_role author
author
dc.contributor.author.fl_str_mv Amaral, Rodrigo Reis
Barazzutti, Lamartini Fontana
Gomes, Herbert Martins
dc.subject.por.fl_str_mv Constrained Optimization
Evolutionary algorithms
Reinforced concrete
Concreto armado
Otimização com restrições
Algoritmos evolutivos
topic Constrained Optimization
Evolutionary algorithms
Reinforced concrete
Concreto armado
Otimização com restrições
Algoritmos evolutivos
description For many industrial activities, ideal projects are achieved by comparing the solution of alternative projects with those already executed. The feasibility of solutions plays an important role in these activities. For example, the underlying objective (cost, profit, etc.) estimated for each project solution is calculated and the best solution is adopted. This is the usual procedure followed by many constructors due to time and resource limitations. However, in many cases, this method is followed simply by a lack of knowledge of existing optimization procedures. In this context, a comparative study of population-based metaheuristic algorithms applied to a case study of a reinforced concrete beam design reinforced with a polymer matrix with carbon fibers will be presented. Evolutionary algorithms have the ability to determine the optimal values of the design variables without disregarding the restrictions on ACI-318 and ACI-440 standards while minimizing the reinforcement area for each beam (cost). The comparative study shows that not all presented algorithms violated design constraints. In addition, it can be said that the values found for the design variables present a low dispersion around the mean value of the objective function.
publishDate 2023
dc.date.none.fl_str_mv 2023-12-01
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufsm.br/cienciaenatura/article/view/74927
10.5902/2179460X74927
url https://periodicos.ufsm.br/cienciaenatura/article/view/74927
identifier_str_mv 10.5902/2179460X74927
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufsm.br/cienciaenatura/article/view/74927/62408
dc.rights.driver.fl_str_mv Copyright (c) 2023 Ciência e Natura
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Ciência e Natura
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
publisher.none.fl_str_mv Universidade Federal de Santa Maria
dc.source.none.fl_str_mv Ciência e Natura; Vol. 45 No. esp. 3 (2023): ENMC/ECTM/MCSul/SEMENGO; e74927
Ciência e Natura; v. 45 n. esp. 3 (2023): XXV ENMC - XIII ECTM - IX MCSul - IX SEMENGO; e74927
2179-460X
0100-8307
reponame:Revista Ciência e Natura (Online)
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Revista Ciência e Natura (Online)
collection Revista Ciência e Natura (Online)
repository.name.fl_str_mv Revista Ciência e Natura (Online) - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv cienciaenatura@ufsm.br || centraldeperiodicos@ufsm.br
_version_ 1839277888045580288