Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade

Detalhes bibliográficos
Autor(a) principal: Damascena, Nicole Prata
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFS
Texto Completo: https://ri.ufs.br/jspui/handle/riufs/23381
Resumo: The study of facial growth with a focus on age estimation and diagnosis is of great importance to medical, dental, and forensic sciences. However, there is currently no scientifically validated method to support forensic results based solely on images, which are often the only available material for analysis. The aim of this study was to evaluate the applicability of Geometric Morphometrics in detecting facial growth patterns in Brazilian children, adolescents, and young adults of both sexes, for the purpose of age estimation in forensic contexts. Automated facial analysis was performed on 4,000 frontal photographs of Brazilian individuals from the civil image database of the Federal Police, equally divided into age groups of 6, 10, 14, and 18 years, and both female and male sexes. The analyses were conducted using R software (version 3.6), with a significance level of 5%. The facial pattern of the sample was modeled using the statistical package geomorph, and the application of Geometric Morphometrics as an age estimation method was based on the Procrustes paradigm. The performance of the method in terms of accuracy, sensitivity, and specificity was tested a priori using a Multinomial Logistic Regression model. The observed growth pattern showed a vertical increase in the face in both sexes over the years, with a slower and more pronounced growth in males, particularly in the lower third of the face. The Geometric Morphometrics methodology showed interesting age discrimination values, achieving an accuracy rate of approximately 70% (69.3%, 95% CI 72.7 - 76.6) in age prediction. The best performance of the method was observed for the age of 6 years (Sensitivity: 87.3%, 95% CI 85.1 - 89.3; Specificity: 95.6%, 95% CI 94.1 - 96.8), especially in the presence of photographs of female children. For the other age groups, Geometric Morphometrics exhibited better performance in age estimation among male individuals. Thus, the study contributed to establishing population growth patterns using facial Geometric Morphometrics, indicating it as a promising method for age estimation in forensic contexts.
id UFS-2_8a82b0b043ad34ab42f0d4dcd6b627cf
oai_identifier_str oai:oai:ri.ufs.br:repo_01:riufs/23381
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Damascena, Nicole PrataFilho, Paulo Ricardo Saquete MartinsMachado, Carlos Eduardo Palhares2025-10-08T14:05:17Z2025-10-08T14:05:17Z2023DAMASCENA, Nicole Prata. Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade. 2023. 96f. Tese (Doutorado em Ciências da Saúde) – Universidade Federal de Sergipe, Aracaju, 2023.https://ri.ufs.br/jspui/handle/riufs/23381The study of facial growth with a focus on age estimation and diagnosis is of great importance to medical, dental, and forensic sciences. However, there is currently no scientifically validated method to support forensic results based solely on images, which are often the only available material for analysis. The aim of this study was to evaluate the applicability of Geometric Morphometrics in detecting facial growth patterns in Brazilian children, adolescents, and young adults of both sexes, for the purpose of age estimation in forensic contexts. Automated facial analysis was performed on 4,000 frontal photographs of Brazilian individuals from the civil image database of the Federal Police, equally divided into age groups of 6, 10, 14, and 18 years, and both female and male sexes. The analyses were conducted using R software (version 3.6), with a significance level of 5%. The facial pattern of the sample was modeled using the statistical package geomorph, and the application of Geometric Morphometrics as an age estimation method was based on the Procrustes paradigm. The performance of the method in terms of accuracy, sensitivity, and specificity was tested a priori using a Multinomial Logistic Regression model. The observed growth pattern showed a vertical increase in the face in both sexes over the years, with a slower and more pronounced growth in males, particularly in the lower third of the face. The Geometric Morphometrics methodology showed interesting age discrimination values, achieving an accuracy rate of approximately 70% (69.3%, 95% CI 72.7 - 76.6) in age prediction. The best performance of the method was observed for the age of 6 years (Sensitivity: 87.3%, 95% CI 85.1 - 89.3; Specificity: 95.6%, 95% CI 94.1 - 96.8), especially in the presence of photographs of female children. For the other age groups, Geometric Morphometrics exhibited better performance in age estimation among male individuals. Thus, the study contributed to establishing population growth patterns using facial Geometric Morphometrics, indicating it as a promising method for age estimation in forensic contexts.O estudo do crescimento facial com foco na estimativa e diagnóstico de idade tem grande importância para as ciências médicas, odontológicas e forenses. Todavia, inexiste método cientificamente capaz de suportar resultados periciais exclusivamente baseados em imagens bidimensionais, que muitas vezes é o único material disponível para análise. O objetivo desse estudo foi avaliar a aplicabilidade da Morfometria Geométrica na detecção de padrões de crescimento facial de crianças, adolescentes e adultos jovens brasileiros, de ambos os sexos, para fins de diagnóstico de idade em contextos forenses. A análise facial automatizada foi realizada em 4.000 (quatro mil) fotografias frontais de indivíduos brasileiros do banco civil de imagens da Polícia Federal, igualmente divididos em grupos etários de 6, 10, 14 e 18 anos e nos sexos feminino e masculino. As análises foram realizadas no software R (versão 3.6), adotando-se nível de significância de 5%. O padrão facial da amostra foi modelado com o uso do pacote estatístico geomorph e a aplicação da Morfometria Geométrica como método de diagnóstico de idade foi baseada no paradigma Procrustes. O desempenho do método em termos de acurácia, sensibilidade e especificidade foi testado a priori através de um modelo de Regressão Logística Multinominal. O padrão de crescimento observado mostrou um aumento vertical da face em ambos os sexos ao longo dos anos, de forma mais lenta e pronunciada nos homens, com um alongamento da face mais evidente em especial no seu terço inferior. A metodologia da Morfometria Geométrica apresentou valores interessantes de discriminação etária, atingindo aproximadamente 70% (69,3%, IC 95% 72,7 – 76,6) de acerto na previsão das idades. O melhor desempenho do método foi observado para a idade de 6 anos (Sensibilidade: 87,3%, IC 95% 85,1 – 89,3; Especificidade: 95,6%, IC 95% 94,1 – 96,8), especialmente na presença de fotografias de crianças do sexo feminino. Para os demais grupos etários, a Morfometria Geométrica apresentou melhor performance no diagnóstico da idade entre indivíduos do sexo masculino. Assim, o estudo contribuiu para o estabelecimento de padrões de crescimento populacional a partir da Morfometria Geométrica facial, indicando-a como um método promissor para diagnóstico da idade em contextos forenses.AracajuporAnálise facialAnálise morfológicaAntropologia forenseEstimativa de idadeDiagnóstico de idadeEstimativa de sexoMorfometria geométricaFacial analysisMorphological analysisForensic anthropologyAge estimationAge diagnosisSex estimationGeometric morphometryMorfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idadeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPós-Graduação em Ciências da SaúdeUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/23381/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALTese_Nicole_Prata_Damascena.pdfTese_Nicole_Prata_Damascena.pdfapplication/pdf4904582https://ri.ufs.br/jspui/bitstream/riufs/23381/2/Tese_Nicole_Prata_Damascena.pdf8273e9c9150c338176fa165dc0ad09cdMD52riufs/233812025-10-08 11:05:22.956oai:oai:ri.ufs.br:repo_01:riufs/23381TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2025-10-08T14:05:22Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade
title Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade
spellingShingle Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade
Damascena, Nicole Prata
Análise facial
Análise morfológica
Antropologia forense
Estimativa de idade
Diagnóstico de idade
Estimativa de sexo
Morfometria geométrica
Facial analysis
Morphological analysis
Forensic anthropology
Age estimation
Age diagnosis
Sex estimation
Geometric morphometry
title_short Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade
title_full Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade
title_fullStr Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade
title_full_unstemmed Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade
title_sort Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade
author Damascena, Nicole Prata
author_facet Damascena, Nicole Prata
author_role author
dc.contributor.author.fl_str_mv Damascena, Nicole Prata
dc.contributor.advisor1.fl_str_mv Filho, Paulo Ricardo Saquete Martins
dc.contributor.advisor-co1.fl_str_mv Machado, Carlos Eduardo Palhares
contributor_str_mv Filho, Paulo Ricardo Saquete Martins
Machado, Carlos Eduardo Palhares
dc.subject.por.fl_str_mv Análise facial
Análise morfológica
Antropologia forense
Estimativa de idade
Diagnóstico de idade
Estimativa de sexo
Morfometria geométrica
topic Análise facial
Análise morfológica
Antropologia forense
Estimativa de idade
Diagnóstico de idade
Estimativa de sexo
Morfometria geométrica
Facial analysis
Morphological analysis
Forensic anthropology
Age estimation
Age diagnosis
Sex estimation
Geometric morphometry
dc.subject.eng.fl_str_mv Facial analysis
Morphological analysis
Forensic anthropology
Age estimation
Age diagnosis
Sex estimation
Geometric morphometry
description The study of facial growth with a focus on age estimation and diagnosis is of great importance to medical, dental, and forensic sciences. However, there is currently no scientifically validated method to support forensic results based solely on images, which are often the only available material for analysis. The aim of this study was to evaluate the applicability of Geometric Morphometrics in detecting facial growth patterns in Brazilian children, adolescents, and young adults of both sexes, for the purpose of age estimation in forensic contexts. Automated facial analysis was performed on 4,000 frontal photographs of Brazilian individuals from the civil image database of the Federal Police, equally divided into age groups of 6, 10, 14, and 18 years, and both female and male sexes. The analyses were conducted using R software (version 3.6), with a significance level of 5%. The facial pattern of the sample was modeled using the statistical package geomorph, and the application of Geometric Morphometrics as an age estimation method was based on the Procrustes paradigm. The performance of the method in terms of accuracy, sensitivity, and specificity was tested a priori using a Multinomial Logistic Regression model. The observed growth pattern showed a vertical increase in the face in both sexes over the years, with a slower and more pronounced growth in males, particularly in the lower third of the face. The Geometric Morphometrics methodology showed interesting age discrimination values, achieving an accuracy rate of approximately 70% (69.3%, 95% CI 72.7 - 76.6) in age prediction. The best performance of the method was observed for the age of 6 years (Sensitivity: 87.3%, 95% CI 85.1 - 89.3; Specificity: 95.6%, 95% CI 94.1 - 96.8), especially in the presence of photographs of female children. For the other age groups, Geometric Morphometrics exhibited better performance in age estimation among male individuals. Thus, the study contributed to establishing population growth patterns using facial Geometric Morphometrics, indicating it as a promising method for age estimation in forensic contexts.
publishDate 2023
dc.date.issued.fl_str_mv 2023
dc.date.accessioned.fl_str_mv 2025-10-08T14:05:17Z
dc.date.available.fl_str_mv 2025-10-08T14:05:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DAMASCENA, Nicole Prata. Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade. 2023. 96f. Tese (Doutorado em Ciências da Saúde) – Universidade Federal de Sergipe, Aracaju, 2023.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/23381
identifier_str_mv DAMASCENA, Nicole Prata. Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade. 2023. 96f. Tese (Doutorado em Ciências da Saúde) – Universidade Federal de Sergipe, Aracaju, 2023.
url https://ri.ufs.br/jspui/handle/riufs/23381
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Pós-Graduação em Ciências da Saúde
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/23381/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/23381/2/Tese_Nicole_Prata_Damascena.pdf
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
8273e9c9150c338176fa165dc0ad09cd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1846687501655212032