Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2023 |
| Tipo de documento: | Tese |
| Idioma: | por |
| Título da fonte: | Repositório Institucional da UFS |
| Texto Completo: | https://ri.ufs.br/jspui/handle/riufs/23381 |
Resumo: | The study of facial growth with a focus on age estimation and diagnosis is of great importance to medical, dental, and forensic sciences. However, there is currently no scientifically validated method to support forensic results based solely on images, which are often the only available material for analysis. The aim of this study was to evaluate the applicability of Geometric Morphometrics in detecting facial growth patterns in Brazilian children, adolescents, and young adults of both sexes, for the purpose of age estimation in forensic contexts. Automated facial analysis was performed on 4,000 frontal photographs of Brazilian individuals from the civil image database of the Federal Police, equally divided into age groups of 6, 10, 14, and 18 years, and both female and male sexes. The analyses were conducted using R software (version 3.6), with a significance level of 5%. The facial pattern of the sample was modeled using the statistical package geomorph, and the application of Geometric Morphometrics as an age estimation method was based on the Procrustes paradigm. The performance of the method in terms of accuracy, sensitivity, and specificity was tested a priori using a Multinomial Logistic Regression model. The observed growth pattern showed a vertical increase in the face in both sexes over the years, with a slower and more pronounced growth in males, particularly in the lower third of the face. The Geometric Morphometrics methodology showed interesting age discrimination values, achieving an accuracy rate of approximately 70% (69.3%, 95% CI 72.7 - 76.6) in age prediction. The best performance of the method was observed for the age of 6 years (Sensitivity: 87.3%, 95% CI 85.1 - 89.3; Specificity: 95.6%, 95% CI 94.1 - 96.8), especially in the presence of photographs of female children. For the other age groups, Geometric Morphometrics exhibited better performance in age estimation among male individuals. Thus, the study contributed to establishing population growth patterns using facial Geometric Morphometrics, indicating it as a promising method for age estimation in forensic contexts. |
| id |
UFS-2_8a82b0b043ad34ab42f0d4dcd6b627cf |
|---|---|
| oai_identifier_str |
oai:oai:ri.ufs.br:repo_01:riufs/23381 |
| network_acronym_str |
UFS-2 |
| network_name_str |
Repositório Institucional da UFS |
| repository_id_str |
|
| spelling |
Damascena, Nicole PrataFilho, Paulo Ricardo Saquete MartinsMachado, Carlos Eduardo Palhares2025-10-08T14:05:17Z2025-10-08T14:05:17Z2023DAMASCENA, Nicole Prata. Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade. 2023. 96f. Tese (Doutorado em Ciências da Saúde) – Universidade Federal de Sergipe, Aracaju, 2023.https://ri.ufs.br/jspui/handle/riufs/23381The study of facial growth with a focus on age estimation and diagnosis is of great importance to medical, dental, and forensic sciences. However, there is currently no scientifically validated method to support forensic results based solely on images, which are often the only available material for analysis. The aim of this study was to evaluate the applicability of Geometric Morphometrics in detecting facial growth patterns in Brazilian children, adolescents, and young adults of both sexes, for the purpose of age estimation in forensic contexts. Automated facial analysis was performed on 4,000 frontal photographs of Brazilian individuals from the civil image database of the Federal Police, equally divided into age groups of 6, 10, 14, and 18 years, and both female and male sexes. The analyses were conducted using R software (version 3.6), with a significance level of 5%. The facial pattern of the sample was modeled using the statistical package geomorph, and the application of Geometric Morphometrics as an age estimation method was based on the Procrustes paradigm. The performance of the method in terms of accuracy, sensitivity, and specificity was tested a priori using a Multinomial Logistic Regression model. The observed growth pattern showed a vertical increase in the face in both sexes over the years, with a slower and more pronounced growth in males, particularly in the lower third of the face. The Geometric Morphometrics methodology showed interesting age discrimination values, achieving an accuracy rate of approximately 70% (69.3%, 95% CI 72.7 - 76.6) in age prediction. The best performance of the method was observed for the age of 6 years (Sensitivity: 87.3%, 95% CI 85.1 - 89.3; Specificity: 95.6%, 95% CI 94.1 - 96.8), especially in the presence of photographs of female children. For the other age groups, Geometric Morphometrics exhibited better performance in age estimation among male individuals. Thus, the study contributed to establishing population growth patterns using facial Geometric Morphometrics, indicating it as a promising method for age estimation in forensic contexts.O estudo do crescimento facial com foco na estimativa e diagnóstico de idade tem grande importância para as ciências médicas, odontológicas e forenses. Todavia, inexiste método cientificamente capaz de suportar resultados periciais exclusivamente baseados em imagens bidimensionais, que muitas vezes é o único material disponível para análise. O objetivo desse estudo foi avaliar a aplicabilidade da Morfometria Geométrica na detecção de padrões de crescimento facial de crianças, adolescentes e adultos jovens brasileiros, de ambos os sexos, para fins de diagnóstico de idade em contextos forenses. A análise facial automatizada foi realizada em 4.000 (quatro mil) fotografias frontais de indivíduos brasileiros do banco civil de imagens da Polícia Federal, igualmente divididos em grupos etários de 6, 10, 14 e 18 anos e nos sexos feminino e masculino. As análises foram realizadas no software R (versão 3.6), adotando-se nível de significância de 5%. O padrão facial da amostra foi modelado com o uso do pacote estatístico geomorph e a aplicação da Morfometria Geométrica como método de diagnóstico de idade foi baseada no paradigma Procrustes. O desempenho do método em termos de acurácia, sensibilidade e especificidade foi testado a priori através de um modelo de Regressão Logística Multinominal. O padrão de crescimento observado mostrou um aumento vertical da face em ambos os sexos ao longo dos anos, de forma mais lenta e pronunciada nos homens, com um alongamento da face mais evidente em especial no seu terço inferior. A metodologia da Morfometria Geométrica apresentou valores interessantes de discriminação etária, atingindo aproximadamente 70% (69,3%, IC 95% 72,7 – 76,6) de acerto na previsão das idades. O melhor desempenho do método foi observado para a idade de 6 anos (Sensibilidade: 87,3%, IC 95% 85,1 – 89,3; Especificidade: 95,6%, IC 95% 94,1 – 96,8), especialmente na presença de fotografias de crianças do sexo feminino. Para os demais grupos etários, a Morfometria Geométrica apresentou melhor performance no diagnóstico da idade entre indivíduos do sexo masculino. Assim, o estudo contribuiu para o estabelecimento de padrões de crescimento populacional a partir da Morfometria Geométrica facial, indicando-a como um método promissor para diagnóstico da idade em contextos forenses.AracajuporAnálise facialAnálise morfológicaAntropologia forenseEstimativa de idadeDiagnóstico de idadeEstimativa de sexoMorfometria geométricaFacial analysisMorphological analysisForensic anthropologyAge estimationAge diagnosisSex estimationGeometric morphometryMorfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idadeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisPós-Graduação em Ciências da SaúdeUniversidade Federal de Sergipereponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/23381/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALTese_Nicole_Prata_Damascena.pdfTese_Nicole_Prata_Damascena.pdfapplication/pdf4904582https://ri.ufs.br/jspui/bitstream/riufs/23381/2/Tese_Nicole_Prata_Damascena.pdf8273e9c9150c338176fa165dc0ad09cdMD52riufs/233812025-10-08 11:05:22.956oai:oai:ri.ufs.br:repo_01:riufs/23381TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2025-10-08T14:05:22Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false |
| dc.title.pt_BR.fl_str_mv |
Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade |
| title |
Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade |
| spellingShingle |
Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade Damascena, Nicole Prata Análise facial Análise morfológica Antropologia forense Estimativa de idade Diagnóstico de idade Estimativa de sexo Morfometria geométrica Facial analysis Morphological analysis Forensic anthropology Age estimation Age diagnosis Sex estimation Geometric morphometry |
| title_short |
Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade |
| title_full |
Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade |
| title_fullStr |
Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade |
| title_full_unstemmed |
Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade |
| title_sort |
Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade |
| author |
Damascena, Nicole Prata |
| author_facet |
Damascena, Nicole Prata |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Damascena, Nicole Prata |
| dc.contributor.advisor1.fl_str_mv |
Filho, Paulo Ricardo Saquete Martins |
| dc.contributor.advisor-co1.fl_str_mv |
Machado, Carlos Eduardo Palhares |
| contributor_str_mv |
Filho, Paulo Ricardo Saquete Martins Machado, Carlos Eduardo Palhares |
| dc.subject.por.fl_str_mv |
Análise facial Análise morfológica Antropologia forense Estimativa de idade Diagnóstico de idade Estimativa de sexo Morfometria geométrica |
| topic |
Análise facial Análise morfológica Antropologia forense Estimativa de idade Diagnóstico de idade Estimativa de sexo Morfometria geométrica Facial analysis Morphological analysis Forensic anthropology Age estimation Age diagnosis Sex estimation Geometric morphometry |
| dc.subject.eng.fl_str_mv |
Facial analysis Morphological analysis Forensic anthropology Age estimation Age diagnosis Sex estimation Geometric morphometry |
| description |
The study of facial growth with a focus on age estimation and diagnosis is of great importance to medical, dental, and forensic sciences. However, there is currently no scientifically validated method to support forensic results based solely on images, which are often the only available material for analysis. The aim of this study was to evaluate the applicability of Geometric Morphometrics in detecting facial growth patterns in Brazilian children, adolescents, and young adults of both sexes, for the purpose of age estimation in forensic contexts. Automated facial analysis was performed on 4,000 frontal photographs of Brazilian individuals from the civil image database of the Federal Police, equally divided into age groups of 6, 10, 14, and 18 years, and both female and male sexes. The analyses were conducted using R software (version 3.6), with a significance level of 5%. The facial pattern of the sample was modeled using the statistical package geomorph, and the application of Geometric Morphometrics as an age estimation method was based on the Procrustes paradigm. The performance of the method in terms of accuracy, sensitivity, and specificity was tested a priori using a Multinomial Logistic Regression model. The observed growth pattern showed a vertical increase in the face in both sexes over the years, with a slower and more pronounced growth in males, particularly in the lower third of the face. The Geometric Morphometrics methodology showed interesting age discrimination values, achieving an accuracy rate of approximately 70% (69.3%, 95% CI 72.7 - 76.6) in age prediction. The best performance of the method was observed for the age of 6 years (Sensitivity: 87.3%, 95% CI 85.1 - 89.3; Specificity: 95.6%, 95% CI 94.1 - 96.8), especially in the presence of photographs of female children. For the other age groups, Geometric Morphometrics exhibited better performance in age estimation among male individuals. Thus, the study contributed to establishing population growth patterns using facial Geometric Morphometrics, indicating it as a promising method for age estimation in forensic contexts. |
| publishDate |
2023 |
| dc.date.issued.fl_str_mv |
2023 |
| dc.date.accessioned.fl_str_mv |
2025-10-08T14:05:17Z |
| dc.date.available.fl_str_mv |
2025-10-08T14:05:17Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
DAMASCENA, Nicole Prata. Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade. 2023. 96f. Tese (Doutorado em Ciências da Saúde) – Universidade Federal de Sergipe, Aracaju, 2023. |
| dc.identifier.uri.fl_str_mv |
https://ri.ufs.br/jspui/handle/riufs/23381 |
| identifier_str_mv |
DAMASCENA, Nicole Prata. Morfometria geométrica em fotografias faciais frontais para avaliação do crescimento e diagnóstico de idade. 2023. 96f. Tese (Doutorado em Ciências da Saúde) – Universidade Federal de Sergipe, Aracaju, 2023. |
| url |
https://ri.ufs.br/jspui/handle/riufs/23381 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.program.fl_str_mv |
Pós-Graduação em Ciências da Saúde |
| dc.publisher.initials.fl_str_mv |
Universidade Federal de Sergipe |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFS instname:Universidade Federal de Sergipe (UFS) instacron:UFS |
| instname_str |
Universidade Federal de Sergipe (UFS) |
| instacron_str |
UFS |
| institution |
UFS |
| reponame_str |
Repositório Institucional da UFS |
| collection |
Repositório Institucional da UFS |
| bitstream.url.fl_str_mv |
https://ri.ufs.br/jspui/bitstream/riufs/23381/1/license.txt https://ri.ufs.br/jspui/bitstream/riufs/23381/2/Tese_Nicole_Prata_Damascena.pdf |
| bitstream.checksum.fl_str_mv |
098cbbf65c2c15e1fb2e49c5d306a44c 8273e9c9150c338176fa165dc0ad09cd |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS) |
| repository.mail.fl_str_mv |
repositorio@academico.ufs.br |
| _version_ |
1846687501655212032 |