As conjecturas como instrumentos de ensino de matemática

Bibliographic Details
Main Author: Alves, David Barreto
Publication Date: 2021
Format: Master thesis
Language: por
Source: Repositório Institucional da UFS
Download full: https://ri.ufs.br/jspui/handle/riufs/21378
Summary: Conjectures are fundamental in the development of Mathematics. Each result that we know, it arose initially from assumptions formulated by deducting of problem situations, and after much analysis, their statements were constructed then. However, there are several claims that mathematicians have still not been able to prove or to refute them, some of them are several centuries old. In this work we present some of thes conjectures, namely: Beal’s Conjecture, Collatz’s Conjecture, Goldbach’s Conjecture and Toeplitz’s Conjecture in which, although they have proved to be extremely complex to demonstrate or to refute them, they present simple comprehension statements and have properties that allow us to explore a few concepts that can be used in Elementary and High school Mathematics classes.
id UFS-2_0c1d8780054e40a07c6882d8b6957bb8
oai_identifier_str oai:oai:ri.ufs.br:repo_01:riufs/21378
network_acronym_str UFS-2
network_name_str Repositório Institucional da UFS
repository_id_str
spelling Alves, David BarretoDória, André Vinicius Santos2025-03-17T14:02:17Z2025-03-17T14:02:17Z2021-05-31ALVES, David Barreto. As conjecturas como instrumentos de ensino de matemática. 2021. 57 f. Dissertação (Mestrado Profissional em Matemática)- Universidade Federal de Sergipe, São Cristóvão, 2021.https://ri.ufs.br/jspui/handle/riufs/21378Conjectures are fundamental in the development of Mathematics. Each result that we know, it arose initially from assumptions formulated by deducting of problem situations, and after much analysis, their statements were constructed then. However, there are several claims that mathematicians have still not been able to prove or to refute them, some of them are several centuries old. In this work we present some of thes conjectures, namely: Beal’s Conjecture, Collatz’s Conjecture, Goldbach’s Conjecture and Toeplitz’s Conjecture in which, although they have proved to be extremely complex to demonstrate or to refute them, they present simple comprehension statements and have properties that allow us to explore a few concepts that can be used in Elementary and High school Mathematics classes.As conjecturas são fundamentais no desenvolvimento da Matemática. Cada resultado que conhecemos, inicialmente surgiu de suposições formuladas através da dedução de situações problemas, e após muita análise, eram construídas suas demonstrações. No entanto, há várias afirmações que até hoje os matemáticos ainda não conseguiram prová-las e nem refutá-las, algumas das quais com vários séculos de existência. Neste trabalho apresentamos algumas dessas conjecturas, a saber: a Conjectura de Beal, a Conjectura de Collatz, a Conjectura de Goldbach e a Conjectura de Toeplitz que, apesar de terem se mostrados extremamente complexas para demonstrá-las ou refutá-las, apresentam enunciados de simples compreensão e possuem propriedades que permitem explorar um pouco alguns conceitos que podem ser usados nas aulas de Matemática dos Ensinos Fundamental e Médio.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESSão CristóvãoporEnsino de matemáticaConjectura de BealConjectura de CollatzConjectura de GoldbachConjectura de ToeplitzMathematics teachingBeal’s conjectureCollatz’s conjectureGoldbach’s conjectureToeplitz’s conjectureCIENCIAS EXATAS E DA TERRA::MATEMATICAAs conjecturas como instrumentos de ensino de matemáticainfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMestrado Profissional em MatemáticaUniversidade Federal de Sergipe (UFS)reponame:Repositório Institucional da UFSinstname:Universidade Federal de Sergipe (UFS)instacron:UFSinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81475https://ri.ufs.br/jspui/bitstream/riufs/21378/1/license.txt098cbbf65c2c15e1fb2e49c5d306a44cMD51ORIGINALDAVID_BARRETO_ALVES.pdfDAVID_BARRETO_ALVES.pdfapplication/pdf2320865https://ri.ufs.br/jspui/bitstream/riufs/21378/2/DAVID_BARRETO_ALVES.pdff2ff26caf74acdf5166b2bf17e23caf1MD52TEXTDAVID_BARRETO_ALVES.pdf.txtDAVID_BARRETO_ALVES.pdf.txtExtracted texttext/plain72764https://ri.ufs.br/jspui/bitstream/riufs/21378/3/DAVID_BARRETO_ALVES.pdf.txt8e2d6db8b265b80397d3165fda564527MD53THUMBNAILDAVID_BARRETO_ALVES.pdf.jpgDAVID_BARRETO_ALVES.pdf.jpgGenerated Thumbnailimage/jpeg1464https://ri.ufs.br/jspui/bitstream/riufs/21378/4/DAVID_BARRETO_ALVES.pdf.jpgd6147e13917b38203a588754b45a1f7dMD54riufs/213782025-03-26 07:52:59.843oai:oai:ri.ufs.br:repo_01:riufs/21378TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvcihlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyIHNldSB0cmFiYWxobyBubyBmb3JtYXRvIGVsZXRyw7RuaWNvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRlIFNlcmdpcGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIHNldSB0cmFiYWxobyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGUgc2V1IHRyYWJhbGhvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIHNldSB0cmFiYWxobyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhIHF1ZSBvIGRlcMOzc2l0bywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgbsOjbyBpbmZyaW5nZSBkaXJlaXRvcyBhdXRvcmFpcyBkZSBuaW5ndcOpbS4KCkNhc28gbyB0cmFiYWxobyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiBkZWNsYXJhIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZGUgU2VyZ2lwZSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EsIGUgcXVlIGVzc2UgbWF0ZXJpYWwgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvLgoKQSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBTZXJnaXBlIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRvIHRyYWJhbGhvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuIAo=Repositório InstitucionalPUBhttps://ri.ufs.br/oai/requestrepositorio@academico.ufs.bropendoar:2025-03-26T10:52:59Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)false
dc.title.pt_BR.fl_str_mv As conjecturas como instrumentos de ensino de matemática
title As conjecturas como instrumentos de ensino de matemática
spellingShingle As conjecturas como instrumentos de ensino de matemática
Alves, David Barreto
Ensino de matemática
Conjectura de Beal
Conjectura de Collatz
Conjectura de Goldbach
Conjectura de Toeplitz
Mathematics teaching
Beal’s conjecture
Collatz’s conjecture
Goldbach’s conjecture
Toeplitz’s conjecture
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short As conjecturas como instrumentos de ensino de matemática
title_full As conjecturas como instrumentos de ensino de matemática
title_fullStr As conjecturas como instrumentos de ensino de matemática
title_full_unstemmed As conjecturas como instrumentos de ensino de matemática
title_sort As conjecturas como instrumentos de ensino de matemática
author Alves, David Barreto
author_facet Alves, David Barreto
author_role author
dc.contributor.author.fl_str_mv Alves, David Barreto
dc.contributor.advisor1.fl_str_mv Dória, André Vinicius Santos
contributor_str_mv Dória, André Vinicius Santos
dc.subject.por.fl_str_mv Ensino de matemática
Conjectura de Beal
Conjectura de Collatz
Conjectura de Goldbach
Conjectura de Toeplitz
topic Ensino de matemática
Conjectura de Beal
Conjectura de Collatz
Conjectura de Goldbach
Conjectura de Toeplitz
Mathematics teaching
Beal’s conjecture
Collatz’s conjecture
Goldbach’s conjecture
Toeplitz’s conjecture
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv Mathematics teaching
Beal’s conjecture
Collatz’s conjecture
Goldbach’s conjecture
Toeplitz’s conjecture
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description Conjectures are fundamental in the development of Mathematics. Each result that we know, it arose initially from assumptions formulated by deducting of problem situations, and after much analysis, their statements were constructed then. However, there are several claims that mathematicians have still not been able to prove or to refute them, some of them are several centuries old. In this work we present some of thes conjectures, namely: Beal’s Conjecture, Collatz’s Conjecture, Goldbach’s Conjecture and Toeplitz’s Conjecture in which, although they have proved to be extremely complex to demonstrate or to refute them, they present simple comprehension statements and have properties that allow us to explore a few concepts that can be used in Elementary and High school Mathematics classes.
publishDate 2021
dc.date.issued.fl_str_mv 2021-05-31
dc.date.accessioned.fl_str_mv 2025-03-17T14:02:17Z
dc.date.available.fl_str_mv 2025-03-17T14:02:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALVES, David Barreto. As conjecturas como instrumentos de ensino de matemática. 2021. 57 f. Dissertação (Mestrado Profissional em Matemática)- Universidade Federal de Sergipe, São Cristóvão, 2021.
dc.identifier.uri.fl_str_mv https://ri.ufs.br/jspui/handle/riufs/21378
identifier_str_mv ALVES, David Barreto. As conjecturas como instrumentos de ensino de matemática. 2021. 57 f. Dissertação (Mestrado Profissional em Matemática)- Universidade Federal de Sergipe, São Cristóvão, 2021.
url https://ri.ufs.br/jspui/handle/riufs/21378
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.program.fl_str_mv Mestrado Profissional em Matemática
dc.publisher.initials.fl_str_mv Universidade Federal de Sergipe (UFS)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFS
instname:Universidade Federal de Sergipe (UFS)
instacron:UFS
instname_str Universidade Federal de Sergipe (UFS)
instacron_str UFS
institution UFS
reponame_str Repositório Institucional da UFS
collection Repositório Institucional da UFS
bitstream.url.fl_str_mv https://ri.ufs.br/jspui/bitstream/riufs/21378/1/license.txt
https://ri.ufs.br/jspui/bitstream/riufs/21378/2/DAVID_BARRETO_ALVES.pdf
https://ri.ufs.br/jspui/bitstream/riufs/21378/3/DAVID_BARRETO_ALVES.pdf.txt
https://ri.ufs.br/jspui/bitstream/riufs/21378/4/DAVID_BARRETO_ALVES.pdf.jpg
bitstream.checksum.fl_str_mv 098cbbf65c2c15e1fb2e49c5d306a44c
f2ff26caf74acdf5166b2bf17e23caf1
8e2d6db8b265b80397d3165fda564527
d6147e13917b38203a588754b45a1f7d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFS - Universidade Federal de Sergipe (UFS)
repository.mail.fl_str_mv repositorio@academico.ufs.br
_version_ 1846687778196160512