Catálogo e ferramenta de detecção de Bad smells de desempenho em sistemas React

Bibliographic Details
Main Author: Barros, Aryclenio Xavier
Publication Date: 2023
Format: Master thesis
Language: por
Source: Repositório Institucional da UFRN
dARK ID: ark:/41046/00130000166wm
Download full: https://repositorio.ufrn.br/handle/123456789/54772
Summary: The Javascript language is one of the most famous development tools today, gaining visibility in several areas such as web games, three-dimensional renderings, artificial intelligence and, mainly, the development of web applications, with its major role in the construction of interfaces through front end development. In this ecosystem, several libraries and frameworks were built, the most famous being the React library, developed and published by Meta (Facebook). Applications built on React, like any other system, need to remain usable and relevant over time. As empirical evidence shows, the presence of bad smells in the code might compromise the software evolvability. Based on this context, this work presents, based on mapping studies of the academic and gray literature, a proposal of bad smells oriented to the React library, integrating them to a code detection tool called ReactLint, which will flag code flaws and will indicate possible solutions to developers who use it. This work aims to validate the proposed smells, as well as the built tool, in order to identify whether they can affect the performance of a React application in the short and long term.
id UFRN_a947c7bfd4f359bf910fb0650658c38c
oai_identifier_str oai:repositorio.ufrn.br:123456789/54772
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Catálogo e ferramenta de detecção de Bad smells de desempenho em sistemas ReactA catalog and a detection tool for performance bad Smells in react systemsBad smellsCode smellsReactCNPQ::ENGENHARIASThe Javascript language is one of the most famous development tools today, gaining visibility in several areas such as web games, three-dimensional renderings, artificial intelligence and, mainly, the development of web applications, with its major role in the construction of interfaces through front end development. In this ecosystem, several libraries and frameworks were built, the most famous being the React library, developed and published by Meta (Facebook). Applications built on React, like any other system, need to remain usable and relevant over time. As empirical evidence shows, the presence of bad smells in the code might compromise the software evolvability. Based on this context, this work presents, based on mapping studies of the academic and gray literature, a proposal of bad smells oriented to the React library, integrating them to a code detection tool called ReactLint, which will flag code flaws and will indicate possible solutions to developers who use it. This work aims to validate the proposed smells, as well as the built tool, in order to identify whether they can affect the performance of a React application in the short and long term.A linguagem Javascript é uma das mais famosas ferramentas de desenvolvimento da atualidade, ganhando visibilidade em diversas áreas como jogos web, renderizações tridimensionais, inteligência artificial e, principalmente, no desenvolvimento de aplicações web, com seu grande papel na construção de interfaces através do desenvolvimento front-end. Nesse ecossistema, foram construídas diversas bibliotecas e frameworks, sendo a mais famosa a biblioteca React, desenvolvida e publicada pela Meta (Facebook). As aplicações construídas em React, como qualquer outro sistema, precisam de se manter utilizáveis e relevantes ao longo do tempo. Como evidências empíricas mostram, a presença de bad smells no código pode comprometer a capacidade de evolução do software. Com base nesse contexto, este trabalho apresenta uma proposta de bad smells orientados à biblioteca React, integrando-os a uma ferramenta de detecção de código chamada ReactLint, que sinalizará falhas de código e indicará possíveis soluções aos desenvolvedores que a utilizarem. Este trabalho tem como objetivo validar os bad smells propostos, bem como a ferramenta construída, a fim de identificar se eles podem afetar o desempenho de uma aplicação React a curto prazo.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM TECNOLOGIA DA INFORMAÇÃOBarbosa, Eiji Adachi Medeiroshttp://lattes.cnpq.br/5253783022587449https://orcid.org/0000-0002-8286-0017http://lattes.cnpq.br/8833409749475821Cirilo, Elder José ReioliSousa, Leonardo da SilvaBarros, Aryclenio Xavier2023-09-11T23:48:37Z2023-09-11T23:48:37Z2023-06-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfBARROS, Aryclenio Xavier. A catalog and a detection tool for performance bad Smells in react systems. Orientador: Eiji Adachi Medeiros Barbosa. 2023. 78f. Dissertação (Mestrado Profissional em Tecnologia da Informação) - Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, 2023.https://repositorio.ufrn.br/handle/123456789/54772ark:/41046/00130000166wminfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2023-09-11T23:49:18Zoai:repositorio.ufrn.br:123456789/54772Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2023-09-11T23:49:18Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Catálogo e ferramenta de detecção de Bad smells de desempenho em sistemas React
A catalog and a detection tool for performance bad Smells in react systems
title Catálogo e ferramenta de detecção de Bad smells de desempenho em sistemas React
spellingShingle Catálogo e ferramenta de detecção de Bad smells de desempenho em sistemas React
Barros, Aryclenio Xavier
Bad smells
Code smells
React
CNPQ::ENGENHARIAS
title_short Catálogo e ferramenta de detecção de Bad smells de desempenho em sistemas React
title_full Catálogo e ferramenta de detecção de Bad smells de desempenho em sistemas React
title_fullStr Catálogo e ferramenta de detecção de Bad smells de desempenho em sistemas React
title_full_unstemmed Catálogo e ferramenta de detecção de Bad smells de desempenho em sistemas React
title_sort Catálogo e ferramenta de detecção de Bad smells de desempenho em sistemas React
author Barros, Aryclenio Xavier
author_facet Barros, Aryclenio Xavier
author_role author
dc.contributor.none.fl_str_mv Barbosa, Eiji Adachi Medeiros
http://lattes.cnpq.br/5253783022587449
https://orcid.org/0000-0002-8286-0017
http://lattes.cnpq.br/8833409749475821
Cirilo, Elder José Reioli
Sousa, Leonardo da Silva
dc.contributor.author.fl_str_mv Barros, Aryclenio Xavier
dc.subject.por.fl_str_mv Bad smells
Code smells
React
CNPQ::ENGENHARIAS
topic Bad smells
Code smells
React
CNPQ::ENGENHARIAS
description The Javascript language is one of the most famous development tools today, gaining visibility in several areas such as web games, three-dimensional renderings, artificial intelligence and, mainly, the development of web applications, with its major role in the construction of interfaces through front end development. In this ecosystem, several libraries and frameworks were built, the most famous being the React library, developed and published by Meta (Facebook). Applications built on React, like any other system, need to remain usable and relevant over time. As empirical evidence shows, the presence of bad smells in the code might compromise the software evolvability. Based on this context, this work presents, based on mapping studies of the academic and gray literature, a proposal of bad smells oriented to the React library, integrating them to a code detection tool called ReactLint, which will flag code flaws and will indicate possible solutions to developers who use it. This work aims to validate the proposed smells, as well as the built tool, in order to identify whether they can affect the performance of a React application in the short and long term.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-11T23:48:37Z
2023-09-11T23:48:37Z
2023-06-23
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BARROS, Aryclenio Xavier. A catalog and a detection tool for performance bad Smells in react systems. Orientador: Eiji Adachi Medeiros Barbosa. 2023. 78f. Dissertação (Mestrado Profissional em Tecnologia da Informação) - Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, 2023.
https://repositorio.ufrn.br/handle/123456789/54772
dc.identifier.dark.fl_str_mv ark:/41046/00130000166wm
identifier_str_mv BARROS, Aryclenio Xavier. A catalog and a detection tool for performance bad Smells in react systems. Orientador: Eiji Adachi Medeiros Barbosa. 2023. 78f. Dissertação (Mestrado Profissional em Tecnologia da Informação) - Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, 2023.
ark:/41046/00130000166wm
url https://repositorio.ufrn.br/handle/123456789/54772
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM TECNOLOGIA DA INFORMAÇÃO
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM TECNOLOGIA DA INFORMAÇÃO
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1839178826238656512