NiO–CGO in situ nanocomposite attainment: one step synthesis

Bibliographic Details
Main Author: Cela, Beatriz
Publication Date: 2011
Other Authors: Macedo, Daniel Araújo de, Souza, Graziele Lopes de, Martinelli, Antonio Eduardo, Nascimento, Rubens Maribondo do, Paskocimas, Carlos Alberto
Format: Article
Language: eng
Source: Repositório Institucional da UFRN
dARK ID: ark:/41046/0013000018gq9
Download full: https://repositorio.ufrn.br/handle/123456789/32019
Summary: The CeO2-based electrolyte low temperature SOFCs require special electrodes with a higher performance and compatibility. The performance of the CeO2-based composite anodes depends on microstructural features such as particle size, tripe phase boundaries (TPB), surface area, and percolation. Some of the primary parameter can be manipulated during the materials synthesis. In this work the compound NiO–Ce0.9Gd0.1O1.95 (NiO–CGO), used as anode in SOFC, was synthesized by two different processes. Both of them are based on the polymeric precursormethod. Characterized by simultaneous thermogravimetry-differential thermal analysis, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and dilatometry. The refinement of the XRD data indicated that the composite sample synthesized by the process called “one step synthesis” produced smaller crystallite size in comparison to the sample attained by the two steps process. Simple preliminary performance tests were done with single cells in which such I–V curves indicated that the cell with one step anode had better performance. “One step synthesis” product, in situ nanocomposite, presented similar fine grained particle sizes for both phases Ni and CGO, which would be beneficial to the electrochemical activity, also indicated by first performance tests
id UFRN_954f2f070c9944dae9aaae71240ad34b
oai_identifier_str oai:repositorio.ufrn.br:123456789/32019
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling NiO–CGO in situ nanocomposite attainment: one step synthesisGadolinium-doped ceriaElectrolyteAnodePolymeric precursor methodSOFCIn-situ nanocompositeThe CeO2-based electrolyte low temperature SOFCs require special electrodes with a higher performance and compatibility. The performance of the CeO2-based composite anodes depends on microstructural features such as particle size, tripe phase boundaries (TPB), surface area, and percolation. Some of the primary parameter can be manipulated during the materials synthesis. In this work the compound NiO–Ce0.9Gd0.1O1.95 (NiO–CGO), used as anode in SOFC, was synthesized by two different processes. Both of them are based on the polymeric precursormethod. Characterized by simultaneous thermogravimetry-differential thermal analysis, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and dilatometry. The refinement of the XRD data indicated that the composite sample synthesized by the process called “one step synthesis” produced smaller crystallite size in comparison to the sample attained by the two steps process. Simple preliminary performance tests were done with single cells in which such I–V curves indicated that the cell with one step anode had better performance. “One step synthesis” product, in situ nanocomposite, presented similar fine grained particle sizes for both phases Ni and CGO, which would be beneficial to the electrochemical activity, also indicated by first performance testsElsevier2021-03-29T18:08:45Z2021-03-29T18:08:45Z2011-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleapplication/pdfCELA, Beatriz ; MACEDO, Daniel A. de ; SOUZA, Graziele L. de ; MARTINELLI, A. E. ; NASCIMENTO, Rubens M. do ; PASKOCIMAS, C. A. . NiO-CGO in-situ nanocomposite attainment: one step synthesis. Journal of Power Sources (Print), v. 196, p. 2539-2544, 2010. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378775310019324?via%3Dihub Acesso em: 16 nov. 2020. https://doi.org/10.1016/j.jpowsour.2010.11.026.0378-7753https://repositorio.ufrn.br/handle/123456789/3201910.1016/j.jpowsour.2010.11.026ark:/41046/0013000018gq9Attribution 3.0 Brazilhttp://creativecommons.org/licenses/by/3.0/br/info:eu-repo/semantics/openAccessCela, BeatrizMacedo, Daniel Araújo deSouza, Graziele Lopes deMartinelli, Antonio EduardoNascimento, Rubens Maribondo doPaskocimas, Carlos Albertoengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2021-04-12T14:04:34Zoai:repositorio.ufrn.br:123456789/32019Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2021-04-12T14:04:34Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv NiO–CGO in situ nanocomposite attainment: one step synthesis
title NiO–CGO in situ nanocomposite attainment: one step synthesis
spellingShingle NiO–CGO in situ nanocomposite attainment: one step synthesis
Cela, Beatriz
Gadolinium-doped ceria
Electrolyte
Anode
Polymeric precursor method
SOFC
In-situ nanocomposite
title_short NiO–CGO in situ nanocomposite attainment: one step synthesis
title_full NiO–CGO in situ nanocomposite attainment: one step synthesis
title_fullStr NiO–CGO in situ nanocomposite attainment: one step synthesis
title_full_unstemmed NiO–CGO in situ nanocomposite attainment: one step synthesis
title_sort NiO–CGO in situ nanocomposite attainment: one step synthesis
author Cela, Beatriz
author_facet Cela, Beatriz
Macedo, Daniel Araújo de
Souza, Graziele Lopes de
Martinelli, Antonio Eduardo
Nascimento, Rubens Maribondo do
Paskocimas, Carlos Alberto
author_role author
author2 Macedo, Daniel Araújo de
Souza, Graziele Lopes de
Martinelli, Antonio Eduardo
Nascimento, Rubens Maribondo do
Paskocimas, Carlos Alberto
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Cela, Beatriz
Macedo, Daniel Araújo de
Souza, Graziele Lopes de
Martinelli, Antonio Eduardo
Nascimento, Rubens Maribondo do
Paskocimas, Carlos Alberto
dc.subject.por.fl_str_mv Gadolinium-doped ceria
Electrolyte
Anode
Polymeric precursor method
SOFC
In-situ nanocomposite
topic Gadolinium-doped ceria
Electrolyte
Anode
Polymeric precursor method
SOFC
In-situ nanocomposite
description The CeO2-based electrolyte low temperature SOFCs require special electrodes with a higher performance and compatibility. The performance of the CeO2-based composite anodes depends on microstructural features such as particle size, tripe phase boundaries (TPB), surface area, and percolation. Some of the primary parameter can be manipulated during the materials synthesis. In this work the compound NiO–Ce0.9Gd0.1O1.95 (NiO–CGO), used as anode in SOFC, was synthesized by two different processes. Both of them are based on the polymeric precursormethod. Characterized by simultaneous thermogravimetry-differential thermal analysis, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy and dilatometry. The refinement of the XRD data indicated that the composite sample synthesized by the process called “one step synthesis” produced smaller crystallite size in comparison to the sample attained by the two steps process. Simple preliminary performance tests were done with single cells in which such I–V curves indicated that the cell with one step anode had better performance. “One step synthesis” product, in situ nanocomposite, presented similar fine grained particle sizes for both phases Ni and CGO, which would be beneficial to the electrochemical activity, also indicated by first performance tests
publishDate 2011
dc.date.none.fl_str_mv 2011-03-01
2021-03-29T18:08:45Z
2021-03-29T18:08:45Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv CELA, Beatriz ; MACEDO, Daniel A. de ; SOUZA, Graziele L. de ; MARTINELLI, A. E. ; NASCIMENTO, Rubens M. do ; PASKOCIMAS, C. A. . NiO-CGO in-situ nanocomposite attainment: one step synthesis. Journal of Power Sources (Print), v. 196, p. 2539-2544, 2010. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378775310019324?via%3Dihub Acesso em: 16 nov. 2020. https://doi.org/10.1016/j.jpowsour.2010.11.026.
0378-7753
https://repositorio.ufrn.br/handle/123456789/32019
10.1016/j.jpowsour.2010.11.026
dc.identifier.dark.fl_str_mv ark:/41046/0013000018gq9
identifier_str_mv CELA, Beatriz ; MACEDO, Daniel A. de ; SOUZA, Graziele L. de ; MARTINELLI, A. E. ; NASCIMENTO, Rubens M. do ; PASKOCIMAS, C. A. . NiO-CGO in-situ nanocomposite attainment: one step synthesis. Journal of Power Sources (Print), v. 196, p. 2539-2544, 2010. Disponível em: https://www.sciencedirect.com/science/article/pii/S0378775310019324?via%3Dihub Acesso em: 16 nov. 2020. https://doi.org/10.1016/j.jpowsour.2010.11.026.
0378-7753
10.1016/j.jpowsour.2010.11.026
ark:/41046/0013000018gq9
url https://repositorio.ufrn.br/handle/123456789/32019
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution 3.0 Brazil
http://creativecommons.org/licenses/by/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Elsevier
publisher.none.fl_str_mv Elsevier
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1839178838395846656