Winding Shorts Detection in SCIG using Convolutional Neural Networks
Main Author: | |
---|---|
Publication Date: | 2023 |
Format: | Bachelor thesis |
Language: | eng |
Source: | Repositório Institucional da UFRN |
dARK ID: | ark:/41046/001300001nqr3 |
Download full: | https://repositorio.ufrn.br/handle/123456789/56805 |
Summary: | In the rapidly evolving landscape of renewable energy, unprecedented growth is occurring in wind power generation. At the core of this growth are Squirrel Cage Induction Generators (SCIGs), known for their simplicity, robustness, and cost-effectiveness. However, the reliability of these generators is often compromised by winding short faults, specifically in the stator winding. This paper presents a novel approach for early detection of these faults using Convolutional Neural Networks (CNNs), thereby enhancing the reliability and reducing the maintenance costs of wind power generation systems. |
id |
UFRN_5bdeb85c6c85fbb958cb7eb794e3345a |
---|---|
oai_identifier_str |
oai:repositorio.ufrn.br:123456789/56805 |
network_acronym_str |
UFRN |
network_name_str |
Repositório Institucional da UFRN |
repository_id_str |
|
spelling |
Winding Shorts Detection in SCIG using Convolutional Neural NetworksWinding Shorts Detection in SCIG using Convolutional Neural NetworksSCIGFault DetectionConvolutional Neural NetworksRenewable EnergyIn the rapidly evolving landscape of renewable energy, unprecedented growth is occurring in wind power generation. At the core of this growth are Squirrel Cage Induction Generators (SCIGs), known for their simplicity, robustness, and cost-effectiveness. However, the reliability of these generators is often compromised by winding short faults, specifically in the stator winding. This paper presents a novel approach for early detection of these faults using Convolutional Neural Networks (CNNs), thereby enhancing the reliability and reducing the maintenance costs of wind power generation systems.In the rapidly evolving landscape of renewable energy, unprecedented growth is occurring in wind power generation. At the core of this growth are Squirrel Cage Induction Generators (SCIGs), known for their simplicity, robustness, and cost-effectiveness. However, the reliability of these generators is often compromised by winding short faults, specifically in the stator winding. This paper presents a novel approach for early detection of these faults using Convolutional Neural Networks (CNNs), thereby enhancing the reliability and reducing the maintenance costs of wind power generation systems.Universidade Federal do Rio Grande do NorteBrasilUFRNEngenharia ElétricaCentro de TecnologiaSilveira, Luizhttps://orcid.org/0000-0001-6167-1893http://lattes.cnpq.br/5714183212530259Barros, Lucianohttp://lattes.cnpq.br/5175817442792763Lins, Hertzhttp://lattes.cnpq.br/4139452169580807Ferreira, Rhendson Alexandre2023-12-22T13:00:11Z2023-12-22T13:00:11Z2023-12-06info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfapplication/pdfFERREIRA, Rhendson Alexandre. Winding Shorts Detection in SCIG using Convolutional Neural Networks. 2023. 6 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Elétrica) - Departamento de Engenharia Elétrica, Universidade Federal do Rio Grande do Norte, 2023.https://repositorio.ufrn.br/handle/123456789/56805ark:/41046/001300001nqr3Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2023-12-22T13:00:11Zoai:repositorio.ufrn.br:123456789/56805Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2023-12-22T13:00:11Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
dc.title.none.fl_str_mv |
Winding Shorts Detection in SCIG using Convolutional Neural Networks Winding Shorts Detection in SCIG using Convolutional Neural Networks |
title |
Winding Shorts Detection in SCIG using Convolutional Neural Networks |
spellingShingle |
Winding Shorts Detection in SCIG using Convolutional Neural Networks Ferreira, Rhendson Alexandre SCIG Fault Detection Convolutional Neural Networks Renewable Energy |
title_short |
Winding Shorts Detection in SCIG using Convolutional Neural Networks |
title_full |
Winding Shorts Detection in SCIG using Convolutional Neural Networks |
title_fullStr |
Winding Shorts Detection in SCIG using Convolutional Neural Networks |
title_full_unstemmed |
Winding Shorts Detection in SCIG using Convolutional Neural Networks |
title_sort |
Winding Shorts Detection in SCIG using Convolutional Neural Networks |
author |
Ferreira, Rhendson Alexandre |
author_facet |
Ferreira, Rhendson Alexandre |
author_role |
author |
dc.contributor.none.fl_str_mv |
Silveira, Luiz https://orcid.org/0000-0001-6167-1893 http://lattes.cnpq.br/5714183212530259 Barros, Luciano http://lattes.cnpq.br/5175817442792763 Lins, Hertz http://lattes.cnpq.br/4139452169580807 |
dc.contributor.author.fl_str_mv |
Ferreira, Rhendson Alexandre |
dc.subject.por.fl_str_mv |
SCIG Fault Detection Convolutional Neural Networks Renewable Energy |
topic |
SCIG Fault Detection Convolutional Neural Networks Renewable Energy |
description |
In the rapidly evolving landscape of renewable energy, unprecedented growth is occurring in wind power generation. At the core of this growth are Squirrel Cage Induction Generators (SCIGs), known for their simplicity, robustness, and cost-effectiveness. However, the reliability of these generators is often compromised by winding short faults, specifically in the stator winding. This paper presents a novel approach for early detection of these faults using Convolutional Neural Networks (CNNs), thereby enhancing the reliability and reducing the maintenance costs of wind power generation systems. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-12-22T13:00:11Z 2023-12-22T13:00:11Z 2023-12-06 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
FERREIRA, Rhendson Alexandre. Winding Shorts Detection in SCIG using Convolutional Neural Networks. 2023. 6 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Elétrica) - Departamento de Engenharia Elétrica, Universidade Federal do Rio Grande do Norte, 2023. https://repositorio.ufrn.br/handle/123456789/56805 |
dc.identifier.dark.fl_str_mv |
ark:/41046/001300001nqr3 |
identifier_str_mv |
FERREIRA, Rhendson Alexandre. Winding Shorts Detection in SCIG using Convolutional Neural Networks. 2023. 6 f. Trabalho de Conclusão de Curso (Graduação em Engenharia Elétrica) - Departamento de Engenharia Elétrica, Universidade Federal do Rio Grande do Norte, 2023. ark:/41046/001300001nqr3 |
url |
https://repositorio.ufrn.br/handle/123456789/56805 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN Engenharia Elétrica Centro de Tecnologia |
publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN Engenharia Elétrica Centro de Tecnologia |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
instacron_str |
UFRN |
institution |
UFRN |
reponame_str |
Repositório Institucional da UFRN |
collection |
Repositório Institucional da UFRN |
repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
repository.mail.fl_str_mv |
repositorio@bczm.ufrn.br |
_version_ |
1839178897516658688 |