Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks

Bibliographic Details
Main Author: Rocha, Bárbara Pacheco da
Publication Date: 2019
Format: Bachelor thesis
Language: eng
Source: Repositório Institucional da UFRGS
Download full: http://hdl.handle.net/10183/211395
Summary: This work is part of the development of a decision support model for the operation of a real steam generator. The study proposes a combined optimization that aims to find operating points that achieve the highest efficiency of the steam generator associated with lower NOx emissions, applying genetic algorithm to the output of artificial neural network (ANN) models. The database consists of 10 operating parameters collected over a year and a half with a half-hour step and treated statistically. The behavior of the steam generator is modeled by multilayer Perceptron artificial neural networks with separate outputs for efficiency and NOx emission. The evaluation metrics applied to the ANNs were mean absolute error (MAE), mean square error (MSE), mean percentage error (MAPE) and coefficient of determination (R2). The ANN for predicting efficiency behavior presents test MSE and MAE of 0.7572 and 0.6206, respectively, and RNA for NOx has test MSE and MAE of 312.43 and 12.36. The optimization targets 98% efficiency of the steam generator and 220.00 mg/mN³ of NOx emissions, and approaches these goals with 97.95% efficiency and 222.28 mg/mN³ of NOx emissions.
id UFRGS-2_ec6cd87b3c73791d15ac7bf08d630e37
oai_identifier_str oai:www.lume.ufrgs.br:10183/211395
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Rocha, Bárbara Pacheco daSchneider, Paulo SmithWeber, Natália de Assis Brasil2020-07-04T03:51:04Z2019http://hdl.handle.net/10183/211395001114202This work is part of the development of a decision support model for the operation of a real steam generator. The study proposes a combined optimization that aims to find operating points that achieve the highest efficiency of the steam generator associated with lower NOx emissions, applying genetic algorithm to the output of artificial neural network (ANN) models. The database consists of 10 operating parameters collected over a year and a half with a half-hour step and treated statistically. The behavior of the steam generator is modeled by multilayer Perceptron artificial neural networks with separate outputs for efficiency and NOx emission. The evaluation metrics applied to the ANNs were mean absolute error (MAE), mean square error (MSE), mean percentage error (MAPE) and coefficient of determination (R2). The ANN for predicting efficiency behavior presents test MSE and MAE of 0.7572 and 0.6206, respectively, and RNA for NOx has test MSE and MAE of 312.43 and 12.36. The optimization targets 98% efficiency of the steam generator and 220.00 mg/mN³ of NOx emissions, and approaches these goals with 97.95% efficiency and 222.28 mg/mN³ of NOx emissions.Este trabalho faz parte do desenvolvimento de um modelo de apoio à decisão para a operação de um gerador de vapor real. O estudo propõe uma otimização combinada que visa encontrar pontos de operação que atinjam a maior eficiência do gerador de vapor associada à menor emissão de NOx, aplicando algoritmo genético na saída de modelos de redes neurais artificiais (RNA). A base de dados é formada por 10 parâmetros de operação coletados durante um ano e meio com passo de meia hora e tratados estatisticamente. O comportamento do gerador de vapor é modelado por redes neurais artificiais Perceptron de várias camadas, com saídas separadas para eficiência e emissão de NOx. As métricas de avaliação empregadas nas RNAs foram o erro médio absoluto (MAE), erro quadrático médio (MSE), erro médio percentual (MAPE) e coeficiente de determinação (R2). A RNA para predizer o comportamento da eficiência apresenta MSE e MAE do seu teste de 0,7572 e 0,6206, respectivamente e a RNA para NOx apresenta MSE e MAE do seu teste de 312,43 e 12,36. A otimização tem como alvo atingir 98% de eficiência do gerador de vapor e 220,00 mg/mN³ de emissões de NOx, e se aproxima dessas metas com 97,95% de eficiência e 222,28 mg/mN³ de emissões de NOx.application/pdfengEngenharia de energiaCoal power plantCombined optimizationDesign of experimentsMetamodelPulverized coal steam generatorEfficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal do Rio Grande do SulEscola de EngenhariaPorto Alegre, BR-RS2019Engenharia de Energiagraduaçãoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001114202.pdf.txt001114202.pdf.txtExtracted Texttext/plain73243http://www.lume.ufrgs.br/bitstream/10183/211395/2/001114202.pdf.txtab98137d1cf21dc1272e5ddd5b06d6adMD52ORIGINAL001114202.pdfTexto completo (inglês)application/pdf2025921http://www.lume.ufrgs.br/bitstream/10183/211395/1/001114202.pdffffca59f5466c6cf2356eb44e9c26da5MD5110183/2113952021-05-26 04:46:09.710576oai:www.lume.ufrgs.br:10183/211395Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2021-05-26T07:46:09Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks
title Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks
spellingShingle Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks
Rocha, Bárbara Pacheco da
Engenharia de energia
Coal power plant
Combined optimization
Design of experiments
Metamodel
Pulverized coal steam generator
title_short Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks
title_full Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks
title_fullStr Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks
title_full_unstemmed Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks
title_sort Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks
author Rocha, Bárbara Pacheco da
author_facet Rocha, Bárbara Pacheco da
author_role author
dc.contributor.author.fl_str_mv Rocha, Bárbara Pacheco da
dc.contributor.advisor1.fl_str_mv Schneider, Paulo Smith
dc.contributor.advisor-co1.fl_str_mv Weber, Natália de Assis Brasil
contributor_str_mv Schneider, Paulo Smith
Weber, Natália de Assis Brasil
dc.subject.por.fl_str_mv Engenharia de energia
topic Engenharia de energia
Coal power plant
Combined optimization
Design of experiments
Metamodel
Pulverized coal steam generator
dc.subject.eng.fl_str_mv Coal power plant
Combined optimization
Design of experiments
Metamodel
Pulverized coal steam generator
description This work is part of the development of a decision support model for the operation of a real steam generator. The study proposes a combined optimization that aims to find operating points that achieve the highest efficiency of the steam generator associated with lower NOx emissions, applying genetic algorithm to the output of artificial neural network (ANN) models. The database consists of 10 operating parameters collected over a year and a half with a half-hour step and treated statistically. The behavior of the steam generator is modeled by multilayer Perceptron artificial neural networks with separate outputs for efficiency and NOx emission. The evaluation metrics applied to the ANNs were mean absolute error (MAE), mean square error (MSE), mean percentage error (MAPE) and coefficient of determination (R2). The ANN for predicting efficiency behavior presents test MSE and MAE of 0.7572 and 0.6206, respectively, and RNA for NOx has test MSE and MAE of 312.43 and 12.36. The optimization targets 98% efficiency of the steam generator and 220.00 mg/mN³ of NOx emissions, and approaches these goals with 97.95% efficiency and 222.28 mg/mN³ of NOx emissions.
publishDate 2019
dc.date.issued.fl_str_mv 2019
dc.date.accessioned.fl_str_mv 2020-07-04T03:51:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/211395
dc.identifier.nrb.pt_BR.fl_str_mv 001114202
url http://hdl.handle.net/10183/211395
identifier_str_mv 001114202
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/211395/2/001114202.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/211395/1/001114202.pdf
bitstream.checksum.fl_str_mv ab98137d1cf21dc1272e5ddd5b06d6ad
fffca59f5466c6cf2356eb44e9c26da5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br
_version_ 1834472259504308224