Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Bachelor thesis |
Language: | eng |
Source: | Repositório Institucional da UFRGS |
Download full: | http://hdl.handle.net/10183/211395 |
Summary: | This work is part of the development of a decision support model for the operation of a real steam generator. The study proposes a combined optimization that aims to find operating points that achieve the highest efficiency of the steam generator associated with lower NOx emissions, applying genetic algorithm to the output of artificial neural network (ANN) models. The database consists of 10 operating parameters collected over a year and a half with a half-hour step and treated statistically. The behavior of the steam generator is modeled by multilayer Perceptron artificial neural networks with separate outputs for efficiency and NOx emission. The evaluation metrics applied to the ANNs were mean absolute error (MAE), mean square error (MSE), mean percentage error (MAPE) and coefficient of determination (R2). The ANN for predicting efficiency behavior presents test MSE and MAE of 0.7572 and 0.6206, respectively, and RNA for NOx has test MSE and MAE of 312.43 and 12.36. The optimization targets 98% efficiency of the steam generator and 220.00 mg/mN³ of NOx emissions, and approaches these goals with 97.95% efficiency and 222.28 mg/mN³ of NOx emissions. |
id |
UFRGS-2_ec6cd87b3c73791d15ac7bf08d630e37 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/211395 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Rocha, Bárbara Pacheco daSchneider, Paulo SmithWeber, Natália de Assis Brasil2020-07-04T03:51:04Z2019http://hdl.handle.net/10183/211395001114202This work is part of the development of a decision support model for the operation of a real steam generator. The study proposes a combined optimization that aims to find operating points that achieve the highest efficiency of the steam generator associated with lower NOx emissions, applying genetic algorithm to the output of artificial neural network (ANN) models. The database consists of 10 operating parameters collected over a year and a half with a half-hour step and treated statistically. The behavior of the steam generator is modeled by multilayer Perceptron artificial neural networks with separate outputs for efficiency and NOx emission. The evaluation metrics applied to the ANNs were mean absolute error (MAE), mean square error (MSE), mean percentage error (MAPE) and coefficient of determination (R2). The ANN for predicting efficiency behavior presents test MSE and MAE of 0.7572 and 0.6206, respectively, and RNA for NOx has test MSE and MAE of 312.43 and 12.36. The optimization targets 98% efficiency of the steam generator and 220.00 mg/mN³ of NOx emissions, and approaches these goals with 97.95% efficiency and 222.28 mg/mN³ of NOx emissions.Este trabalho faz parte do desenvolvimento de um modelo de apoio à decisão para a operação de um gerador de vapor real. O estudo propõe uma otimização combinada que visa encontrar pontos de operação que atinjam a maior eficiência do gerador de vapor associada à menor emissão de NOx, aplicando algoritmo genético na saída de modelos de redes neurais artificiais (RNA). A base de dados é formada por 10 parâmetros de operação coletados durante um ano e meio com passo de meia hora e tratados estatisticamente. O comportamento do gerador de vapor é modelado por redes neurais artificiais Perceptron de várias camadas, com saídas separadas para eficiência e emissão de NOx. As métricas de avaliação empregadas nas RNAs foram o erro médio absoluto (MAE), erro quadrático médio (MSE), erro médio percentual (MAPE) e coeficiente de determinação (R2). A RNA para predizer o comportamento da eficiência apresenta MSE e MAE do seu teste de 0,7572 e 0,6206, respectivamente e a RNA para NOx apresenta MSE e MAE do seu teste de 312,43 e 12,36. A otimização tem como alvo atingir 98% de eficiência do gerador de vapor e 220,00 mg/mN³ de emissões de NOx, e se aproxima dessas metas com 97,95% de eficiência e 222,28 mg/mN³ de emissões de NOx.application/pdfengEngenharia de energiaCoal power plantCombined optimizationDesign of experimentsMetamodelPulverized coal steam generatorEfficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisUniversidade Federal do Rio Grande do SulEscola de EngenhariaPorto Alegre, BR-RS2019Engenharia de Energiagraduaçãoinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001114202.pdf.txt001114202.pdf.txtExtracted Texttext/plain73243http://www.lume.ufrgs.br/bitstream/10183/211395/2/001114202.pdf.txtab98137d1cf21dc1272e5ddd5b06d6adMD52ORIGINAL001114202.pdfTexto completo (inglês)application/pdf2025921http://www.lume.ufrgs.br/bitstream/10183/211395/1/001114202.pdffffca59f5466c6cf2356eb44e9c26da5MD5110183/2113952021-05-26 04:46:09.710576oai:www.lume.ufrgs.br:10183/211395Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2021-05-26T07:46:09Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks |
title |
Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks |
spellingShingle |
Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks Rocha, Bárbara Pacheco da Engenharia de energia Coal power plant Combined optimization Design of experiments Metamodel Pulverized coal steam generator |
title_short |
Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks |
title_full |
Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks |
title_fullStr |
Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks |
title_full_unstemmed |
Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks |
title_sort |
Efficiency and nox emission optimization by genetic algorithm of a coal-fired steam generator modeled with artificial neural networks |
author |
Rocha, Bárbara Pacheco da |
author_facet |
Rocha, Bárbara Pacheco da |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rocha, Bárbara Pacheco da |
dc.contributor.advisor1.fl_str_mv |
Schneider, Paulo Smith |
dc.contributor.advisor-co1.fl_str_mv |
Weber, Natália de Assis Brasil |
contributor_str_mv |
Schneider, Paulo Smith Weber, Natália de Assis Brasil |
dc.subject.por.fl_str_mv |
Engenharia de energia |
topic |
Engenharia de energia Coal power plant Combined optimization Design of experiments Metamodel Pulverized coal steam generator |
dc.subject.eng.fl_str_mv |
Coal power plant Combined optimization Design of experiments Metamodel Pulverized coal steam generator |
description |
This work is part of the development of a decision support model for the operation of a real steam generator. The study proposes a combined optimization that aims to find operating points that achieve the highest efficiency of the steam generator associated with lower NOx emissions, applying genetic algorithm to the output of artificial neural network (ANN) models. The database consists of 10 operating parameters collected over a year and a half with a half-hour step and treated statistically. The behavior of the steam generator is modeled by multilayer Perceptron artificial neural networks with separate outputs for efficiency and NOx emission. The evaluation metrics applied to the ANNs were mean absolute error (MAE), mean square error (MSE), mean percentage error (MAPE) and coefficient of determination (R2). The ANN for predicting efficiency behavior presents test MSE and MAE of 0.7572 and 0.6206, respectively, and RNA for NOx has test MSE and MAE of 312.43 and 12.36. The optimization targets 98% efficiency of the steam generator and 220.00 mg/mN³ of NOx emissions, and approaches these goals with 97.95% efficiency and 222.28 mg/mN³ of NOx emissions. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019 |
dc.date.accessioned.fl_str_mv |
2020-07-04T03:51:04Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/211395 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001114202 |
url |
http://hdl.handle.net/10183/211395 |
identifier_str_mv |
001114202 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/211395/2/001114202.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/211395/1/001114202.pdf |
bitstream.checksum.fl_str_mv |
ab98137d1cf21dc1272e5ddd5b06d6ad fffca59f5466c6cf2356eb44e9c26da5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br |
_version_ |
1834472259504308224 |