Beta autoregressive moving average model with the Aranda-Ordaz link function

Bibliographic Details
Main Author: Manchini, Carlos Eduardo Frantz
Publication Date: 2024
Other Authors: Canterle, Diego Ramos, Pumi, Guilherme, Bayer, Fábio Mariano
Format: Article
Language: eng
Source: Repositório Institucional da UFRGS
Download full: http://hdl.handle.net/10183/292355
Summary: In this work, we introduce an extension of the so-called beta autoregressive moving average (βARMA) models. βARMA models consider a linear dynamic structure for the conditional mean of a beta distributed variable. The conditional mean is connected to the linear predictor via a suitable link function. We propose modeling the relationship between the conditional mean and the linear predictor by means of the asymmetric Aranda-Ordaz parametric link function. The link function contains a parameter estimated along with the other parameters via partial maximum likelihood. We derive the partial score vector and Fisher’s information matrix and consider hypothesis testing, diagnostic analysis, and forecasting for the proposed model. The finite sample performance of the partial maximum likelihood estimation is studied through a Monte Carlo simulation study. An application to the proportion of stocked hydroelectric energy in the south of Brazil is presented.
id UFRGS-2_9f39b45a02abb7fa5f52eb8c3d1afe88
oai_identifier_str oai:www.lume.ufrgs.br:10183/292355
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Manchini, Carlos Eduardo FrantzCanterle, Diego RamosPumi, GuilhermeBayer, Fábio Mariano2025-06-03T06:42:28Z20242075-1680http://hdl.handle.net/10183/292355001216897In this work, we introduce an extension of the so-called beta autoregressive moving average (βARMA) models. βARMA models consider a linear dynamic structure for the conditional mean of a beta distributed variable. The conditional mean is connected to the linear predictor via a suitable link function. We propose modeling the relationship between the conditional mean and the linear predictor by means of the asymmetric Aranda-Ordaz parametric link function. The link function contains a parameter estimated along with the other parameters via partial maximum likelihood. We derive the partial score vector and Fisher’s information matrix and consider hypothesis testing, diagnostic analysis, and forecasting for the proposed model. The finite sample performance of the partial maximum likelihood estimation is studied through a Monte Carlo simulation study. An application to the proportion of stocked hydroelectric energy in the south of Brazil is presented.application/pdfengAxioms. Basel. Vol. 13, n. 11 (Nov. 2024), Art. 806PrevisãoSéries temporaisβARMA modelsDouble bounded dataForecastingNon-Gaussian time seriesParametric link functionBeta autoregressive moving average model with the Aranda-Ordaz link functionEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001216897.pdf.txt001216897.pdf.txtExtracted Texttext/plain52294http://www.lume.ufrgs.br/bitstream/10183/292355/2/001216897.pdf.txtbc4d1db8c80c69505ef233888420b146MD52ORIGINAL001216897.pdfTexto completo (inglês)application/pdf625791http://www.lume.ufrgs.br/bitstream/10183/292355/1/001216897.pdfa863cf27bec4b5bcafc6a359849bdbfaMD5110183/2923552025-06-03 06:49:26.759oai:www.lume.ufrgs.br:10183/292355Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2025-06-03T09:49:26Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Beta autoregressive moving average model with the Aranda-Ordaz link function
title Beta autoregressive moving average model with the Aranda-Ordaz link function
spellingShingle Beta autoregressive moving average model with the Aranda-Ordaz link function
Manchini, Carlos Eduardo Frantz
Previsão
Séries temporais
βARMA models
Double bounded data
Forecasting
Non-Gaussian time series
Parametric link function
title_short Beta autoregressive moving average model with the Aranda-Ordaz link function
title_full Beta autoregressive moving average model with the Aranda-Ordaz link function
title_fullStr Beta autoregressive moving average model with the Aranda-Ordaz link function
title_full_unstemmed Beta autoregressive moving average model with the Aranda-Ordaz link function
title_sort Beta autoregressive moving average model with the Aranda-Ordaz link function
author Manchini, Carlos Eduardo Frantz
author_facet Manchini, Carlos Eduardo Frantz
Canterle, Diego Ramos
Pumi, Guilherme
Bayer, Fábio Mariano
author_role author
author2 Canterle, Diego Ramos
Pumi, Guilherme
Bayer, Fábio Mariano
author2_role author
author
author
dc.contributor.author.fl_str_mv Manchini, Carlos Eduardo Frantz
Canterle, Diego Ramos
Pumi, Guilherme
Bayer, Fábio Mariano
dc.subject.por.fl_str_mv Previsão
Séries temporais
topic Previsão
Séries temporais
βARMA models
Double bounded data
Forecasting
Non-Gaussian time series
Parametric link function
dc.subject.eng.fl_str_mv βARMA models
Double bounded data
Forecasting
Non-Gaussian time series
Parametric link function
description In this work, we introduce an extension of the so-called beta autoregressive moving average (βARMA) models. βARMA models consider a linear dynamic structure for the conditional mean of a beta distributed variable. The conditional mean is connected to the linear predictor via a suitable link function. We propose modeling the relationship between the conditional mean and the linear predictor by means of the asymmetric Aranda-Ordaz parametric link function. The link function contains a parameter estimated along with the other parameters via partial maximum likelihood. We derive the partial score vector and Fisher’s information matrix and consider hypothesis testing, diagnostic analysis, and forecasting for the proposed model. The finite sample performance of the partial maximum likelihood estimation is studied through a Monte Carlo simulation study. An application to the proportion of stocked hydroelectric energy in the south of Brazil is presented.
publishDate 2024
dc.date.issued.fl_str_mv 2024
dc.date.accessioned.fl_str_mv 2025-06-03T06:42:28Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/292355
dc.identifier.issn.pt_BR.fl_str_mv 2075-1680
dc.identifier.nrb.pt_BR.fl_str_mv 001216897
identifier_str_mv 2075-1680
001216897
url http://hdl.handle.net/10183/292355
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Axioms. Basel. Vol. 13, n. 11 (Nov. 2024), Art. 806
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/292355/2/001216897.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/292355/1/001216897.pdf
bitstream.checksum.fl_str_mv bc4d1db8c80c69505ef233888420b146
a863cf27bec4b5bcafc6a359849bdbfa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br
_version_ 1834472611957964800