Beta autoregressive moving average model with the Aranda-Ordaz link function
Main Author: | |
---|---|
Publication Date: | 2024 |
Other Authors: | , , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UFRGS |
Download full: | http://hdl.handle.net/10183/292355 |
Summary: | In this work, we introduce an extension of the so-called beta autoregressive moving average (βARMA) models. βARMA models consider a linear dynamic structure for the conditional mean of a beta distributed variable. The conditional mean is connected to the linear predictor via a suitable link function. We propose modeling the relationship between the conditional mean and the linear predictor by means of the asymmetric Aranda-Ordaz parametric link function. The link function contains a parameter estimated along with the other parameters via partial maximum likelihood. We derive the partial score vector and Fisher’s information matrix and consider hypothesis testing, diagnostic analysis, and forecasting for the proposed model. The finite sample performance of the partial maximum likelihood estimation is studied through a Monte Carlo simulation study. An application to the proportion of stocked hydroelectric energy in the south of Brazil is presented. |
id |
UFRGS-2_9f39b45a02abb7fa5f52eb8c3d1afe88 |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/292355 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Manchini, Carlos Eduardo FrantzCanterle, Diego RamosPumi, GuilhermeBayer, Fábio Mariano2025-06-03T06:42:28Z20242075-1680http://hdl.handle.net/10183/292355001216897In this work, we introduce an extension of the so-called beta autoregressive moving average (βARMA) models. βARMA models consider a linear dynamic structure for the conditional mean of a beta distributed variable. The conditional mean is connected to the linear predictor via a suitable link function. We propose modeling the relationship between the conditional mean and the linear predictor by means of the asymmetric Aranda-Ordaz parametric link function. The link function contains a parameter estimated along with the other parameters via partial maximum likelihood. We derive the partial score vector and Fisher’s information matrix and consider hypothesis testing, diagnostic analysis, and forecasting for the proposed model. The finite sample performance of the partial maximum likelihood estimation is studied through a Monte Carlo simulation study. An application to the proportion of stocked hydroelectric energy in the south of Brazil is presented.application/pdfengAxioms. Basel. Vol. 13, n. 11 (Nov. 2024), Art. 806PrevisãoSéries temporaisβARMA modelsDouble bounded dataForecastingNon-Gaussian time seriesParametric link functionBeta autoregressive moving average model with the Aranda-Ordaz link functionEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSTEXT001216897.pdf.txt001216897.pdf.txtExtracted Texttext/plain52294http://www.lume.ufrgs.br/bitstream/10183/292355/2/001216897.pdf.txtbc4d1db8c80c69505ef233888420b146MD52ORIGINAL001216897.pdfTexto completo (inglês)application/pdf625791http://www.lume.ufrgs.br/bitstream/10183/292355/1/001216897.pdfa863cf27bec4b5bcafc6a359849bdbfaMD5110183/2923552025-06-03 06:49:26.759oai:www.lume.ufrgs.br:10183/292355Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2025-06-03T09:49:26Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
Beta autoregressive moving average model with the Aranda-Ordaz link function |
title |
Beta autoregressive moving average model with the Aranda-Ordaz link function |
spellingShingle |
Beta autoregressive moving average model with the Aranda-Ordaz link function Manchini, Carlos Eduardo Frantz Previsão Séries temporais βARMA models Double bounded data Forecasting Non-Gaussian time series Parametric link function |
title_short |
Beta autoregressive moving average model with the Aranda-Ordaz link function |
title_full |
Beta autoregressive moving average model with the Aranda-Ordaz link function |
title_fullStr |
Beta autoregressive moving average model with the Aranda-Ordaz link function |
title_full_unstemmed |
Beta autoregressive moving average model with the Aranda-Ordaz link function |
title_sort |
Beta autoregressive moving average model with the Aranda-Ordaz link function |
author |
Manchini, Carlos Eduardo Frantz |
author_facet |
Manchini, Carlos Eduardo Frantz Canterle, Diego Ramos Pumi, Guilherme Bayer, Fábio Mariano |
author_role |
author |
author2 |
Canterle, Diego Ramos Pumi, Guilherme Bayer, Fábio Mariano |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Manchini, Carlos Eduardo Frantz Canterle, Diego Ramos Pumi, Guilherme Bayer, Fábio Mariano |
dc.subject.por.fl_str_mv |
Previsão Séries temporais |
topic |
Previsão Séries temporais βARMA models Double bounded data Forecasting Non-Gaussian time series Parametric link function |
dc.subject.eng.fl_str_mv |
βARMA models Double bounded data Forecasting Non-Gaussian time series Parametric link function |
description |
In this work, we introduce an extension of the so-called beta autoregressive moving average (βARMA) models. βARMA models consider a linear dynamic structure for the conditional mean of a beta distributed variable. The conditional mean is connected to the linear predictor via a suitable link function. We propose modeling the relationship between the conditional mean and the linear predictor by means of the asymmetric Aranda-Ordaz parametric link function. The link function contains a parameter estimated along with the other parameters via partial maximum likelihood. We derive the partial score vector and Fisher’s information matrix and consider hypothesis testing, diagnostic analysis, and forecasting for the proposed model. The finite sample performance of the partial maximum likelihood estimation is studied through a Monte Carlo simulation study. An application to the proportion of stocked hydroelectric energy in the south of Brazil is presented. |
publishDate |
2024 |
dc.date.issued.fl_str_mv |
2024 |
dc.date.accessioned.fl_str_mv |
2025-06-03T06:42:28Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/292355 |
dc.identifier.issn.pt_BR.fl_str_mv |
2075-1680 |
dc.identifier.nrb.pt_BR.fl_str_mv |
001216897 |
identifier_str_mv |
2075-1680 001216897 |
url |
http://hdl.handle.net/10183/292355 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Axioms. Basel. Vol. 13, n. 11 (Nov. 2024), Art. 806 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/292355/2/001216897.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/292355/1/001216897.pdf |
bitstream.checksum.fl_str_mv |
bc4d1db8c80c69505ef233888420b146 a863cf27bec4b5bcafc6a359849bdbfa |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br |
_version_ |
1834472611957964800 |