Export Ready — 

A geostatistical framework for estimating compositional data avoiding bias in back-transformation

Bibliographic Details
Main Author: Hundelshaussen Rubio, Ricardo José
Publication Date: 2016
Other Authors: Costa, Joao Felipe Coimbra Leite, Bassani, Marcel Antônio Arcari
Format: Article
Language: eng
Source: Repositório Institucional da UFRGS
Download full: http://hdl.handle.net/10183/143926
Summary: Estimation of some mineral deposits involves chemical species or a granulometric mass balance that constitute a closed constant sum (e.g., 100%). Data that add up to a constant are known as compositional data (CODA). Classical geostatistical estimation methods (e.g., kriging) are not satisfactory when CODA are used, since bias is expected when estimated mean block values are back-transformed to the original space. CODA methods use nonlinear transformations, and when the transformed data are interpolated, they cannot be returned directly to the space of the original data. If these averages are back-transformed using the inverse function, bias is generated. To avoid this bias, this article proposes geostatistical simulation of the isometric logratio ratio (ilr) transformations back-transforming point simulated values (instead of block estimations), with the averaging being postponed to the end of the process. The results show that, in addition to maintaining the mass balance and the correlations among the variables, the means (E-types) of the simulations satisfactorily reproduce the statistical characteristics of the grades without any sort of bias. A complete case study of a major bauxite deposit illustrates the methodology.
id UFRGS-2_948940aaf8aa016fba08d04bb7e8b75a
oai_identifier_str oai:www.lume.ufrgs.br:10183/143926
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Hundelshaussen Rubio, Ricardo JoséCosta, Joao Felipe Coimbra LeiteBassani, Marcel Antônio Arcari2016-07-23T02:17:54Z20160370-4467http://hdl.handle.net/10183/143926000996957Estimation of some mineral deposits involves chemical species or a granulometric mass balance that constitute a closed constant sum (e.g., 100%). Data that add up to a constant are known as compositional data (CODA). Classical geostatistical estimation methods (e.g., kriging) are not satisfactory when CODA are used, since bias is expected when estimated mean block values are back-transformed to the original space. CODA methods use nonlinear transformations, and when the transformed data are interpolated, they cannot be returned directly to the space of the original data. If these averages are back-transformed using the inverse function, bias is generated. To avoid this bias, this article proposes geostatistical simulation of the isometric logratio ratio (ilr) transformations back-transforming point simulated values (instead of block estimations), with the averaging being postponed to the end of the process. The results show that, in addition to maintaining the mass balance and the correlations among the variables, the means (E-types) of the simulations satisfactorily reproduce the statistical characteristics of the grades without any sort of bias. A complete case study of a major bauxite deposit illustrates the methodology.application/pdfengRem: revista Escola de Minas. Ouro Preto, MG. Vol. 69, no. 2 (Apr./June 2016), p. 219-226Simulação geoestatísticaCompositional dataIsometric transformations ratios (ilr)SimulationClosureA geostatistical framework for estimating compositional data avoiding bias in back-transformationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000996957.pdf000996957.pdfTexto completo (inglês)application/pdf2200765http://www.lume.ufrgs.br/bitstream/10183/143926/1/000996957.pdfe890757e6d81e56b8b8508c4bc54e9c5MD51TEXT000996957.pdf.txt000996957.pdf.txtExtracted Texttext/plain23164http://www.lume.ufrgs.br/bitstream/10183/143926/2/000996957.pdf.txte00444a4a58f94c42c57495410cf5240MD52THUMBNAIL000996957.pdf.jpg000996957.pdf.jpgGenerated Thumbnailimage/jpeg2082http://www.lume.ufrgs.br/bitstream/10183/143926/3/000996957.pdf.jpg8d0bacfc937d33a704b40e9ba419df14MD5310183/1439262018-10-29 07:40:15.562oai:www.lume.ufrgs.br:10183/143926Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2018-10-29T10:40:15Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv A geostatistical framework for estimating compositional data avoiding bias in back-transformation
title A geostatistical framework for estimating compositional data avoiding bias in back-transformation
spellingShingle A geostatistical framework for estimating compositional data avoiding bias in back-transformation
Hundelshaussen Rubio, Ricardo José
Simulação geoestatística
Compositional data
Isometric transformations ratios (ilr)
Simulation
Closure
title_short A geostatistical framework for estimating compositional data avoiding bias in back-transformation
title_full A geostatistical framework for estimating compositional data avoiding bias in back-transformation
title_fullStr A geostatistical framework for estimating compositional data avoiding bias in back-transformation
title_full_unstemmed A geostatistical framework for estimating compositional data avoiding bias in back-transformation
title_sort A geostatistical framework for estimating compositional data avoiding bias in back-transformation
author Hundelshaussen Rubio, Ricardo José
author_facet Hundelshaussen Rubio, Ricardo José
Costa, Joao Felipe Coimbra Leite
Bassani, Marcel Antônio Arcari
author_role author
author2 Costa, Joao Felipe Coimbra Leite
Bassani, Marcel Antônio Arcari
author2_role author
author
dc.contributor.author.fl_str_mv Hundelshaussen Rubio, Ricardo José
Costa, Joao Felipe Coimbra Leite
Bassani, Marcel Antônio Arcari
dc.subject.por.fl_str_mv Simulação geoestatística
topic Simulação geoestatística
Compositional data
Isometric transformations ratios (ilr)
Simulation
Closure
dc.subject.eng.fl_str_mv Compositional data
Isometric transformations ratios (ilr)
Simulation
Closure
description Estimation of some mineral deposits involves chemical species or a granulometric mass balance that constitute a closed constant sum (e.g., 100%). Data that add up to a constant are known as compositional data (CODA). Classical geostatistical estimation methods (e.g., kriging) are not satisfactory when CODA are used, since bias is expected when estimated mean block values are back-transformed to the original space. CODA methods use nonlinear transformations, and when the transformed data are interpolated, they cannot be returned directly to the space of the original data. If these averages are back-transformed using the inverse function, bias is generated. To avoid this bias, this article proposes geostatistical simulation of the isometric logratio ratio (ilr) transformations back-transforming point simulated values (instead of block estimations), with the averaging being postponed to the end of the process. The results show that, in addition to maintaining the mass balance and the correlations among the variables, the means (E-types) of the simulations satisfactorily reproduce the statistical characteristics of the grades without any sort of bias. A complete case study of a major bauxite deposit illustrates the methodology.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-07-23T02:17:54Z
dc.date.issued.fl_str_mv 2016
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/other
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/143926
dc.identifier.issn.pt_BR.fl_str_mv 0370-4467
dc.identifier.nrb.pt_BR.fl_str_mv 000996957
identifier_str_mv 0370-4467
000996957
url http://hdl.handle.net/10183/143926
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv Rem: revista Escola de Minas. Ouro Preto, MG. Vol. 69, no. 2 (Apr./June 2016), p. 219-226
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/143926/1/000996957.pdf
http://www.lume.ufrgs.br/bitstream/10183/143926/2/000996957.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/143926/3/000996957.pdf.jpg
bitstream.checksum.fl_str_mv e890757e6d81e56b8b8508c4bc54e9c5
e00444a4a58f94c42c57495410cf5240
8d0bacfc937d33a704b40e9ba419df14
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br
_version_ 1834472438896787456