A geostatistical framework for estimating compositional data avoiding bias in back-transformation
Main Author: | |
---|---|
Publication Date: | 2016 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UFRGS |
Download full: | http://hdl.handle.net/10183/143926 |
Summary: | Estimation of some mineral deposits involves chemical species or a granulometric mass balance that constitute a closed constant sum (e.g., 100%). Data that add up to a constant are known as compositional data (CODA). Classical geostatistical estimation methods (e.g., kriging) are not satisfactory when CODA are used, since bias is expected when estimated mean block values are back-transformed to the original space. CODA methods use nonlinear transformations, and when the transformed data are interpolated, they cannot be returned directly to the space of the original data. If these averages are back-transformed using the inverse function, bias is generated. To avoid this bias, this article proposes geostatistical simulation of the isometric logratio ratio (ilr) transformations back-transforming point simulated values (instead of block estimations), with the averaging being postponed to the end of the process. The results show that, in addition to maintaining the mass balance and the correlations among the variables, the means (E-types) of the simulations satisfactorily reproduce the statistical characteristics of the grades without any sort of bias. A complete case study of a major bauxite deposit illustrates the methodology. |
id |
UFRGS-2_948940aaf8aa016fba08d04bb7e8b75a |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/143926 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Hundelshaussen Rubio, Ricardo JoséCosta, Joao Felipe Coimbra LeiteBassani, Marcel Antônio Arcari2016-07-23T02:17:54Z20160370-4467http://hdl.handle.net/10183/143926000996957Estimation of some mineral deposits involves chemical species or a granulometric mass balance that constitute a closed constant sum (e.g., 100%). Data that add up to a constant are known as compositional data (CODA). Classical geostatistical estimation methods (e.g., kriging) are not satisfactory when CODA are used, since bias is expected when estimated mean block values are back-transformed to the original space. CODA methods use nonlinear transformations, and when the transformed data are interpolated, they cannot be returned directly to the space of the original data. If these averages are back-transformed using the inverse function, bias is generated. To avoid this bias, this article proposes geostatistical simulation of the isometric logratio ratio (ilr) transformations back-transforming point simulated values (instead of block estimations), with the averaging being postponed to the end of the process. The results show that, in addition to maintaining the mass balance and the correlations among the variables, the means (E-types) of the simulations satisfactorily reproduce the statistical characteristics of the grades without any sort of bias. A complete case study of a major bauxite deposit illustrates the methodology.application/pdfengRem: revista Escola de Minas. Ouro Preto, MG. Vol. 69, no. 2 (Apr./June 2016), p. 219-226Simulação geoestatísticaCompositional dataIsometric transformations ratios (ilr)SimulationClosureA geostatistical framework for estimating compositional data avoiding bias in back-transformationinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/otherinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000996957.pdf000996957.pdfTexto completo (inglês)application/pdf2200765http://www.lume.ufrgs.br/bitstream/10183/143926/1/000996957.pdfe890757e6d81e56b8b8508c4bc54e9c5MD51TEXT000996957.pdf.txt000996957.pdf.txtExtracted Texttext/plain23164http://www.lume.ufrgs.br/bitstream/10183/143926/2/000996957.pdf.txte00444a4a58f94c42c57495410cf5240MD52THUMBNAIL000996957.pdf.jpg000996957.pdf.jpgGenerated Thumbnailimage/jpeg2082http://www.lume.ufrgs.br/bitstream/10183/143926/3/000996957.pdf.jpg8d0bacfc937d33a704b40e9ba419df14MD5310183/1439262018-10-29 07:40:15.562oai:www.lume.ufrgs.br:10183/143926Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2018-10-29T10:40:15Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
A geostatistical framework for estimating compositional data avoiding bias in back-transformation |
title |
A geostatistical framework for estimating compositional data avoiding bias in back-transformation |
spellingShingle |
A geostatistical framework for estimating compositional data avoiding bias in back-transformation Hundelshaussen Rubio, Ricardo José Simulação geoestatística Compositional data Isometric transformations ratios (ilr) Simulation Closure |
title_short |
A geostatistical framework for estimating compositional data avoiding bias in back-transformation |
title_full |
A geostatistical framework for estimating compositional data avoiding bias in back-transformation |
title_fullStr |
A geostatistical framework for estimating compositional data avoiding bias in back-transformation |
title_full_unstemmed |
A geostatistical framework for estimating compositional data avoiding bias in back-transformation |
title_sort |
A geostatistical framework for estimating compositional data avoiding bias in back-transformation |
author |
Hundelshaussen Rubio, Ricardo José |
author_facet |
Hundelshaussen Rubio, Ricardo José Costa, Joao Felipe Coimbra Leite Bassani, Marcel Antônio Arcari |
author_role |
author |
author2 |
Costa, Joao Felipe Coimbra Leite Bassani, Marcel Antônio Arcari |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Hundelshaussen Rubio, Ricardo José Costa, Joao Felipe Coimbra Leite Bassani, Marcel Antônio Arcari |
dc.subject.por.fl_str_mv |
Simulação geoestatística |
topic |
Simulação geoestatística Compositional data Isometric transformations ratios (ilr) Simulation Closure |
dc.subject.eng.fl_str_mv |
Compositional data Isometric transformations ratios (ilr) Simulation Closure |
description |
Estimation of some mineral deposits involves chemical species or a granulometric mass balance that constitute a closed constant sum (e.g., 100%). Data that add up to a constant are known as compositional data (CODA). Classical geostatistical estimation methods (e.g., kriging) are not satisfactory when CODA are used, since bias is expected when estimated mean block values are back-transformed to the original space. CODA methods use nonlinear transformations, and when the transformed data are interpolated, they cannot be returned directly to the space of the original data. If these averages are back-transformed using the inverse function, bias is generated. To avoid this bias, this article proposes geostatistical simulation of the isometric logratio ratio (ilr) transformations back-transforming point simulated values (instead of block estimations), with the averaging being postponed to the end of the process. The results show that, in addition to maintaining the mass balance and the correlations among the variables, the means (E-types) of the simulations satisfactorily reproduce the statistical characteristics of the grades without any sort of bias. A complete case study of a major bauxite deposit illustrates the methodology. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-07-23T02:17:54Z |
dc.date.issued.fl_str_mv |
2016 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/other |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/143926 |
dc.identifier.issn.pt_BR.fl_str_mv |
0370-4467 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000996957 |
identifier_str_mv |
0370-4467 000996957 |
url |
http://hdl.handle.net/10183/143926 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
Rem: revista Escola de Minas. Ouro Preto, MG. Vol. 69, no. 2 (Apr./June 2016), p. 219-226 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/143926/1/000996957.pdf http://www.lume.ufrgs.br/bitstream/10183/143926/2/000996957.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/143926/3/000996957.pdf.jpg |
bitstream.checksum.fl_str_mv |
e890757e6d81e56b8b8508c4bc54e9c5 e00444a4a58f94c42c57495410cf5240 8d0bacfc937d33a704b40e9ba419df14 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br |
_version_ |
1834472438896787456 |