A new block algorithm for full-rank solution of the Sylvester-observer equation

Bibliographic Details
Main Author: Carvalho, Joao Batista da Paz
Publication Date: 2003
Other Authors: Datta, Karabi, Hong, Yoopyo
Format: Article
Language: eng
Source: Repositório Institucional da UFRGS
Download full: http://hdl.handle.net/10183/27610
Summary: A new block algorithm for computing a full rank solution of the Sylvester-observer equation arising in state estimation is proposed. The major computational kernels of this algorithm are: 1) solutions of standard Sylvester equations, in each case of which one of the matrices is of much smaller order than that of the system matrix and (furthermore, this small matrix can be chosen arbitrarily), and 2) orthogonal reduction of small order matrices. There are numerically stable algorithms for performing these tasks including the Krylov-subspace methods for solving large and sparse Sylvester equations. The proposed algorithm is also rich in Level 3 Basic Linear Algebra Subroutine (BLAS-3) computations and is thus suitable for high performance computing. Furthermore, the results on numerical experiments on some benchmark examples show that the algorithm has better accuracy than that of some of the existing block algorithms for this problem.
id UFRGS-2_6edcc8fc4d923e879b1aeafb1ce77dde
oai_identifier_str oai:www.lume.ufrgs.br:10183/27610
network_acronym_str UFRGS-2
network_name_str Repositório Institucional da UFRGS
repository_id_str
spelling Carvalho, Joao Batista da PazDatta, KarabiHong, Yoopyo2011-01-29T06:00:40Z20030018-9286http://hdl.handle.net/10183/27610000642886A new block algorithm for computing a full rank solution of the Sylvester-observer equation arising in state estimation is proposed. The major computational kernels of this algorithm are: 1) solutions of standard Sylvester equations, in each case of which one of the matrices is of much smaller order than that of the system matrix and (furthermore, this small matrix can be chosen arbitrarily), and 2) orthogonal reduction of small order matrices. There are numerically stable algorithms for performing these tasks including the Krylov-subspace methods for solving large and sparse Sylvester equations. The proposed algorithm is also rich in Level 3 Basic Linear Algebra Subroutine (BLAS-3) computations and is thus suitable for high performance computing. Furthermore, the results on numerical experiments on some benchmark examples show that the algorithm has better accuracy than that of some of the existing block algorithms for this problem.application/pdfengIEEE transactions on automatic control. New York. Vol. 48, no. 12 (dec. 2003), p. 2223-2228AlgoritmosBlock algorithmSylvester-observer equationState estimationA new block algorithm for full-rank solution of the Sylvester-observer equationEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000642886.pdf000642886.pdfTexto completo (inglês)application/pdf345367http://www.lume.ufrgs.br/bitstream/10183/27610/1/000642886.pdf90eb06d28346c5514cfe13a69b35dd6fMD51TEXT000642886.pdf.txt000642886.pdf.txtExtracted Texttext/plain21629http://www.lume.ufrgs.br/bitstream/10183/27610/2/000642886.pdf.txtedbd24407bb8e174b6d7b28fe816fec1MD52THUMBNAIL000642886.pdf.jpg000642886.pdf.jpgGenerated Thumbnailimage/jpeg1962http://www.lume.ufrgs.br/bitstream/10183/27610/3/000642886.pdf.jpge941b9eb519fe253b31e52d4cc8759e7MD5310183/276102021-06-13 04:36:48.745521oai:www.lume.ufrgs.br:10183/27610Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2021-06-13T07:36:48Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv A new block algorithm for full-rank solution of the Sylvester-observer equation
title A new block algorithm for full-rank solution of the Sylvester-observer equation
spellingShingle A new block algorithm for full-rank solution of the Sylvester-observer equation
Carvalho, Joao Batista da Paz
Algoritmos
Block algorithm
Sylvester-observer equation
State estimation
title_short A new block algorithm for full-rank solution of the Sylvester-observer equation
title_full A new block algorithm for full-rank solution of the Sylvester-observer equation
title_fullStr A new block algorithm for full-rank solution of the Sylvester-observer equation
title_full_unstemmed A new block algorithm for full-rank solution of the Sylvester-observer equation
title_sort A new block algorithm for full-rank solution of the Sylvester-observer equation
author Carvalho, Joao Batista da Paz
author_facet Carvalho, Joao Batista da Paz
Datta, Karabi
Hong, Yoopyo
author_role author
author2 Datta, Karabi
Hong, Yoopyo
author2_role author
author
dc.contributor.author.fl_str_mv Carvalho, Joao Batista da Paz
Datta, Karabi
Hong, Yoopyo
dc.subject.por.fl_str_mv Algoritmos
topic Algoritmos
Block algorithm
Sylvester-observer equation
State estimation
dc.subject.eng.fl_str_mv Block algorithm
Sylvester-observer equation
State estimation
description A new block algorithm for computing a full rank solution of the Sylvester-observer equation arising in state estimation is proposed. The major computational kernels of this algorithm are: 1) solutions of standard Sylvester equations, in each case of which one of the matrices is of much smaller order than that of the system matrix and (furthermore, this small matrix can be chosen arbitrarily), and 2) orthogonal reduction of small order matrices. There are numerically stable algorithms for performing these tasks including the Krylov-subspace methods for solving large and sparse Sylvester equations. The proposed algorithm is also rich in Level 3 Basic Linear Algebra Subroutine (BLAS-3) computations and is thus suitable for high performance computing. Furthermore, the results on numerical experiments on some benchmark examples show that the algorithm has better accuracy than that of some of the existing block algorithms for this problem.
publishDate 2003
dc.date.issued.fl_str_mv 2003
dc.date.accessioned.fl_str_mv 2011-01-29T06:00:40Z
dc.type.driver.fl_str_mv Estrangeiro
info:eu-repo/semantics/article
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/27610
dc.identifier.issn.pt_BR.fl_str_mv 0018-9286
dc.identifier.nrb.pt_BR.fl_str_mv 000642886
identifier_str_mv 0018-9286
000642886
url http://hdl.handle.net/10183/27610
dc.language.iso.fl_str_mv eng
language eng
dc.relation.ispartof.pt_BR.fl_str_mv IEEE transactions on automatic control. New York. Vol. 48, no. 12 (dec. 2003), p. 2223-2228
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Repositório Institucional da UFRGS
collection Repositório Institucional da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/27610/1/000642886.pdf
http://www.lume.ufrgs.br/bitstream/10183/27610/2/000642886.pdf.txt
http://www.lume.ufrgs.br/bitstream/10183/27610/3/000642886.pdf.jpg
bitstream.checksum.fl_str_mv 90eb06d28346c5514cfe13a69b35dd6f
edbd24407bb8e174b6d7b28fe816fec1
e941b9eb519fe253b31e52d4cc8759e7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br
_version_ 1834472371709280256