A new block algorithm for full-rank solution of the Sylvester-observer equation
Main Author: | |
---|---|
Publication Date: | 2003 |
Other Authors: | , |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da UFRGS |
Download full: | http://hdl.handle.net/10183/27610 |
Summary: | A new block algorithm for computing a full rank solution of the Sylvester-observer equation arising in state estimation is proposed. The major computational kernels of this algorithm are: 1) solutions of standard Sylvester equations, in each case of which one of the matrices is of much smaller order than that of the system matrix and (furthermore, this small matrix can be chosen arbitrarily), and 2) orthogonal reduction of small order matrices. There are numerically stable algorithms for performing these tasks including the Krylov-subspace methods for solving large and sparse Sylvester equations. The proposed algorithm is also rich in Level 3 Basic Linear Algebra Subroutine (BLAS-3) computations and is thus suitable for high performance computing. Furthermore, the results on numerical experiments on some benchmark examples show that the algorithm has better accuracy than that of some of the existing block algorithms for this problem. |
id |
UFRGS-2_6edcc8fc4d923e879b1aeafb1ce77dde |
---|---|
oai_identifier_str |
oai:www.lume.ufrgs.br:10183/27610 |
network_acronym_str |
UFRGS-2 |
network_name_str |
Repositório Institucional da UFRGS |
repository_id_str |
|
spelling |
Carvalho, Joao Batista da PazDatta, KarabiHong, Yoopyo2011-01-29T06:00:40Z20030018-9286http://hdl.handle.net/10183/27610000642886A new block algorithm for computing a full rank solution of the Sylvester-observer equation arising in state estimation is proposed. The major computational kernels of this algorithm are: 1) solutions of standard Sylvester equations, in each case of which one of the matrices is of much smaller order than that of the system matrix and (furthermore, this small matrix can be chosen arbitrarily), and 2) orthogonal reduction of small order matrices. There are numerically stable algorithms for performing these tasks including the Krylov-subspace methods for solving large and sparse Sylvester equations. The proposed algorithm is also rich in Level 3 Basic Linear Algebra Subroutine (BLAS-3) computations and is thus suitable for high performance computing. Furthermore, the results on numerical experiments on some benchmark examples show that the algorithm has better accuracy than that of some of the existing block algorithms for this problem.application/pdfengIEEE transactions on automatic control. New York. Vol. 48, no. 12 (dec. 2003), p. 2223-2228AlgoritmosBlock algorithmSylvester-observer equationState estimationA new block algorithm for full-rank solution of the Sylvester-observer equationEstrangeiroinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL000642886.pdf000642886.pdfTexto completo (inglês)application/pdf345367http://www.lume.ufrgs.br/bitstream/10183/27610/1/000642886.pdf90eb06d28346c5514cfe13a69b35dd6fMD51TEXT000642886.pdf.txt000642886.pdf.txtExtracted Texttext/plain21629http://www.lume.ufrgs.br/bitstream/10183/27610/2/000642886.pdf.txtedbd24407bb8e174b6d7b28fe816fec1MD52THUMBNAIL000642886.pdf.jpg000642886.pdf.jpgGenerated Thumbnailimage/jpeg1962http://www.lume.ufrgs.br/bitstream/10183/27610/3/000642886.pdf.jpge941b9eb519fe253b31e52d4cc8759e7MD5310183/276102021-06-13 04:36:48.745521oai:www.lume.ufrgs.br:10183/27610Repositório InstitucionalPUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.bropendoar:2021-06-13T07:36:48Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
dc.title.pt_BR.fl_str_mv |
A new block algorithm for full-rank solution of the Sylvester-observer equation |
title |
A new block algorithm for full-rank solution of the Sylvester-observer equation |
spellingShingle |
A new block algorithm for full-rank solution of the Sylvester-observer equation Carvalho, Joao Batista da Paz Algoritmos Block algorithm Sylvester-observer equation State estimation |
title_short |
A new block algorithm for full-rank solution of the Sylvester-observer equation |
title_full |
A new block algorithm for full-rank solution of the Sylvester-observer equation |
title_fullStr |
A new block algorithm for full-rank solution of the Sylvester-observer equation |
title_full_unstemmed |
A new block algorithm for full-rank solution of the Sylvester-observer equation |
title_sort |
A new block algorithm for full-rank solution of the Sylvester-observer equation |
author |
Carvalho, Joao Batista da Paz |
author_facet |
Carvalho, Joao Batista da Paz Datta, Karabi Hong, Yoopyo |
author_role |
author |
author2 |
Datta, Karabi Hong, Yoopyo |
author2_role |
author author |
dc.contributor.author.fl_str_mv |
Carvalho, Joao Batista da Paz Datta, Karabi Hong, Yoopyo |
dc.subject.por.fl_str_mv |
Algoritmos |
topic |
Algoritmos Block algorithm Sylvester-observer equation State estimation |
dc.subject.eng.fl_str_mv |
Block algorithm Sylvester-observer equation State estimation |
description |
A new block algorithm for computing a full rank solution of the Sylvester-observer equation arising in state estimation is proposed. The major computational kernels of this algorithm are: 1) solutions of standard Sylvester equations, in each case of which one of the matrices is of much smaller order than that of the system matrix and (furthermore, this small matrix can be chosen arbitrarily), and 2) orthogonal reduction of small order matrices. There are numerically stable algorithms for performing these tasks including the Krylov-subspace methods for solving large and sparse Sylvester equations. The proposed algorithm is also rich in Level 3 Basic Linear Algebra Subroutine (BLAS-3) computations and is thus suitable for high performance computing. Furthermore, the results on numerical experiments on some benchmark examples show that the algorithm has better accuracy than that of some of the existing block algorithms for this problem. |
publishDate |
2003 |
dc.date.issued.fl_str_mv |
2003 |
dc.date.accessioned.fl_str_mv |
2011-01-29T06:00:40Z |
dc.type.driver.fl_str_mv |
Estrangeiro info:eu-repo/semantics/article |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/27610 |
dc.identifier.issn.pt_BR.fl_str_mv |
0018-9286 |
dc.identifier.nrb.pt_BR.fl_str_mv |
000642886 |
identifier_str_mv |
0018-9286 000642886 |
url |
http://hdl.handle.net/10183/27610 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.ispartof.pt_BR.fl_str_mv |
IEEE transactions on automatic control. New York. Vol. 48, no. 12 (dec. 2003), p. 2223-2228 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
instacron_str |
UFRGS |
institution |
UFRGS |
reponame_str |
Repositório Institucional da UFRGS |
collection |
Repositório Institucional da UFRGS |
bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/27610/1/000642886.pdf http://www.lume.ufrgs.br/bitstream/10183/27610/2/000642886.pdf.txt http://www.lume.ufrgs.br/bitstream/10183/27610/3/000642886.pdf.jpg |
bitstream.checksum.fl_str_mv |
90eb06d28346c5514cfe13a69b35dd6f edbd24407bb8e174b6d7b28fe816fec1 e941b9eb519fe253b31e52d4cc8759e7 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
repository.mail.fl_str_mv |
lume@ufrgs.br |
_version_ |
1834472371709280256 |