Energy-aware coverage path planning for unmanned aerial vehicles
Main Author: | |
---|---|
Publication Date: | 2019 |
Format: | Doctoral thesis |
Language: | por |
Source: | Repositório Institucional da UFPel - Guaiaca |
Download full: | http://guaiaca.ufpel.edu.br/handle/prefix/6405 |
Summary: | The Coverage Path Planning (CPP) problem is a motion planning subtopic in robotics, where it is necessary to build a path for a robot to explore every location in a given scenario. Unmanned Aerial Vehicles (UAV) have been employed in several application domains related to the CPP problem. Despite the technological progress related to control systems and energy monitoring, one of the most significant limitations of UAVs is endurance, especially in multirotors. These vehicles have a limited payload, which consequently also restricts their batteries. In this way, minimizing the energy consumption of these vehicles is pivotal to prolong and guarantee the coverage mission. The energy consumption is usually associated with the number of turning maneuvers in a given trajectory. Most studies in literature seek to minimize this issue to save energy and, consequently, enhance endurance. However, important factors are usually ignored, such as the acceleration and deceleration phases, optimal speed to travel a straight distance, the entrance speed and turning angle when performing a maneuver. Thus, this work aims to propose energy-aware coverage path planning solutions based on flight patterns, complete algorithms, and pheromone-based methods for regular and irregular-shaped areas containing full and partial information considering the impact of different aspects in the UAV energy consumption, such as traveled distance, mission execution time, turning maneuvers, optimal speed, and external conditions. First, we present an energy-aware spiral coverage path planning algorithm called E-Spiral. The flight pattern performs missions over regular-shaped areas consisting of concave and convex polygons. The proposed approach considers specific requirement applications, such as overlapping and image resolution, to guarantee a complete area mapping in photogrammetric sensing applications. Furthermore, the algorithm explores an improved energy model to adopt optimal speeds in straight segments of the path to minimize the total energy consumption. Next, we present an energy-aware grid-based coverage path planning algorithm called EG-CPP. The complete algorithm generates coverage paths for mapping missions over irregular-shaped areas containing no-fly zones. Our solution improves an existing grid-based method by replacing its original cost function based on the sum of angles to an energy-aware cost function. As a further contribution, two pruning techniques improve the performance of the algorithm. This improvement speeds up the computational time of the algorithm up to 99%, allowing to explore all the different starting positions in the workspace and saving even more energy. Then, we present an energy-aware pheromone-based solution for patrolling missions called NC-Drone. The approach extends an existing real-time search method aiming at minimizing the number of turning maneuvers while keeping the unpredictable behavior during coverage. We propose two types of NC-Drone, a centralized algorithm and a decentralized one with a few variations. These variations explore a matrix-representation to store the visited cells in the vehicle’s memory and adopt synchronization schemes to share the information between the UAVs. We also propose cooperative strategies to improve the algorithm and further explore the problem considering relevant aspects, such as time, uncertainty, and communication. We combine all NC-Drone strategies into a single solution for the patrolling problem. Therefore, three novel approaches are proposed able to successfully addressing several problems related to different coverage path planning scenarios, advancing the state-of-the-art in this area. |
id |
UFPL_aa720ca57aa52cc447afbd5fa0b0cd06 |
---|---|
oai_identifier_str |
oai:guaiaca.ufpel.edu.br:prefix/6405 |
network_acronym_str |
UFPL |
network_name_str |
Repositório Institucional da UFPel - Guaiaca |
repository_id_str |
|
spelling |
2020-08-13T11:59:55Z2020-08-13T11:59:55Z2019-10-25CABREIRA, Tauã Milech. Energy-aware Coverage Path Planning for Unmanned Aerial Vehicles. Advisor: Paulo Roberto Ferreira Junior. 2019. 146 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2019.http://guaiaca.ufpel.edu.br/handle/prefix/6405The Coverage Path Planning (CPP) problem is a motion planning subtopic in robotics, where it is necessary to build a path for a robot to explore every location in a given scenario. Unmanned Aerial Vehicles (UAV) have been employed in several application domains related to the CPP problem. Despite the technological progress related to control systems and energy monitoring, one of the most significant limitations of UAVs is endurance, especially in multirotors. These vehicles have a limited payload, which consequently also restricts their batteries. In this way, minimizing the energy consumption of these vehicles is pivotal to prolong and guarantee the coverage mission. The energy consumption is usually associated with the number of turning maneuvers in a given trajectory. Most studies in literature seek to minimize this issue to save energy and, consequently, enhance endurance. However, important factors are usually ignored, such as the acceleration and deceleration phases, optimal speed to travel a straight distance, the entrance speed and turning angle when performing a maneuver. Thus, this work aims to propose energy-aware coverage path planning solutions based on flight patterns, complete algorithms, and pheromone-based methods for regular and irregular-shaped areas containing full and partial information considering the impact of different aspects in the UAV energy consumption, such as traveled distance, mission execution time, turning maneuvers, optimal speed, and external conditions. First, we present an energy-aware spiral coverage path planning algorithm called E-Spiral. The flight pattern performs missions over regular-shaped areas consisting of concave and convex polygons. The proposed approach considers specific requirement applications, such as overlapping and image resolution, to guarantee a complete area mapping in photogrammetric sensing applications. Furthermore, the algorithm explores an improved energy model to adopt optimal speeds in straight segments of the path to minimize the total energy consumption. Next, we present an energy-aware grid-based coverage path planning algorithm called EG-CPP. The complete algorithm generates coverage paths for mapping missions over irregular-shaped areas containing no-fly zones. Our solution improves an existing grid-based method by replacing its original cost function based on the sum of angles to an energy-aware cost function. As a further contribution, two pruning techniques improve the performance of the algorithm. This improvement speeds up the computational time of the algorithm up to 99%, allowing to explore all the different starting positions in the workspace and saving even more energy. Then, we present an energy-aware pheromone-based solution for patrolling missions called NC-Drone. The approach extends an existing real-time search method aiming at minimizing the number of turning maneuvers while keeping the unpredictable behavior during coverage. We propose two types of NC-Drone, a centralized algorithm and a decentralized one with a few variations. These variations explore a matrix-representation to store the visited cells in the vehicle’s memory and adopt synchronization schemes to share the information between the UAVs. We also propose cooperative strategies to improve the algorithm and further explore the problem considering relevant aspects, such as time, uncertainty, and communication. We combine all NC-Drone strategies into a single solution for the patrolling problem. Therefore, three novel approaches are proposed able to successfully addressing several problems related to different coverage path planning scenarios, advancing the state-of-the-art in this area.O problema de Planejamento de Caminhos de Cobertura (PCC) é um subtópico de planejamento de movimento na robótica, onde é necessário construir um caminho para um robô para explorar cada local em um determinado cenário. Veículos Aéreos Não Tripulados (VANT) têm sido empregados em diversas aplicações relacionadas ao PCC. Apesar do progresso tecnológico relacionado à sistemas de controle e monitoramento de energia, uma das maiores limitações dos VANTs é o tempo de voo, especialmente em multirotores. Estes veículos possuem uma capacidade de carga limitada, o que consequentemente restringe as suas baterias. Desta forma, minimizar o consumo de energia destes veículos é fundamental para prolongar e garantir a missão de cobertura. O consumo de energia é usualmente associado ao número de manobras de virada em uma determinada trajetória. A maioria dos estudos na literatura visa minimizar estas manobras para economizar energia e, consequentemente, aumentar o tempo de voo. No entanto, fatores importantes são normalmente ignorados, como as fases de aceleração e desaceleração, a velocidade ótima para percorrer uma distância reta, e a velocidade de entrada e o ângulo de virada ao executar uma manobra. Sendo assim, este trabalho propõe soluções de planejamento de caminhos de cobertura com preocupação energética baseadas em padrões de voo, algoritmos completos e métodos inspirados em feromônios. As abordagens lidam com áreas de formato regular e irregular contendo informação parcial e completa e consideram o impacto de diferentes aspectos no consumo de energia dos VANTs, como distância percorrida, tempo de execução da missão, manobras de virada, velocidade ótima e condições externas. Primeiramente, apresentamos um algoritmo de planejamento de caminhos de cobertura em espiral com preocupação energética chamado E-Spiral. O padrão de voo executa a missão em áreas regulares que consistem em polígonos côncavos e convexos. A abordagem proposta leva em consideração requisitos de aplicação específicos, como a sobreposição e a resolução de imagens, para garantir um mapeamento completo da área em aplicações de fotogrametria. Além disso, o algoritmo explora um modelo de energia aprimorado para adotar velocidades ótimas em segmentos retos da rota para minimizar o consumo total de energia. Na sequência, apresentamos um algoritmo de planejamento de caminhos de cobertura baseado em grade com preocupação energética chamado EG-CPP. O algoritmo completo gera rotas de cobertura para missões de mapeamento em áreas irregulares contendo zonas de exclusão aérea. Nossa solução aprimora um método baseado em grade existente através da substituição de sua função de custo original baseada na soma dos ângulos por uma função de custo com preocupação energética. Como contribuição adicional, duas técnicas de poda aprimoram o desempenho do algoritmo. Esta melhora acelera o tempo computacional do algoritmo em até 99%, permitindo a exploração de todas as diferentes posições iniciais no cenário e economizando ainda mais energia. Por fim, apresentamos uma solução baseada em feromônios com preocupação energética para missões de patrulhamento chamada NC-Drone. A abordagem aperfeiçoa um método de busca em tempo real existente com o intuito de minimizar o número de manobras de virada enquanto mantém o comportamento imprevisível durante a cobertura. Propomos dois tipos de NC-Drone, um algoritmo centralizado e um decentralizado com algumas variações. Estas variações exploram uma representação em matriz para armazenar as células visitadas na memória do veículo. Elas também adotam esquemas de sincronização para compartilhar informações entre os VANTs. Também propomos estratégias cooperativas para aprimorar o algoritmo e explorar ainda mais o problema considerando aspectos relevantes, como tempo, incerteza e comunicação. Combinamos todas as estratégias do NC-Drone em uma única solução para o problema de patrulhamento. Portanto, as três novas soluções propostas são capazes de abordar com sucesso diversos aspectos relacionados a diferentes circunstâncias do problema de planejamento de caminhos de cobertura, avançando o estado-da-arte nesta área.Sem bolsaporUniversidade Federal de PelotasPrograma de Pós-Graduação em ComputaçãoUFPelBrasilCentro de Desenvolvimento TecnológicoCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOComputaçãoCoverage path planningEnergy-awareUAVFlight patternComplete algorithmPheromone-based heuristicPlanejamento de caminhos de coberturaPreocupação energéticaVANTPadrão de vooAlgoritmo completoHeurística baseada em feromônioEnergy-aware coverage path planning for unmanned aerial vehiclesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://lattes.cnpq.br/0374284601160109http://lattes.cnpq.br/0481478169272902Brisolara, Lisane Brisolara dehttp://lattes.cnpq.br/9175591364526313Ferreira Júnior, Paulo RobertoCabreira, Tauã Milechinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPel - Guaiacainstname:Universidade Federal de Pelotas (UFPEL)instacron:UFPELTEXTTese_Tauã_Milech_Cabreira.pdf.txtTese_Tauã_Milech_Cabreira.pdf.txtExtracted texttext/plain316536http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/6/Tese_Tau%c3%a3_Milech_Cabreira.pdf.txt1684a4990198433028ebdad6f5240114MD56open accessTHUMBNAILTese_Tauã_Milech_Cabreira.pdf.jpgTese_Tauã_Milech_Cabreira.pdf.jpgGenerated Thumbnailimage/jpeg1208http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/7/Tese_Tau%c3%a3_Milech_Cabreira.pdf.jpgf178d4a57dcffc9081ddd076126d993eMD57open accessORIGINALTese_Tauã_Milech_Cabreira.pdfTese_Tauã_Milech_Cabreira.pdfapplication/pdf12220423http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/1/Tese_Tau%c3%a3_Milech_Cabreira.pdf799429b957aaee3dcb66a5b9d08c2580MD51open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52open accesslicense_textlicense_texttext/html; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81866http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/5/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD55open accessprefix/64052023-07-13 04:29:07.11open accessoai:guaiaca.ufpel.edu.br:prefix/6405TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpel.edu.br/oai/requestrippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.bropendoar:2023-07-13T07:29:07Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)false |
dc.title.pt_BR.fl_str_mv |
Energy-aware coverage path planning for unmanned aerial vehicles |
title |
Energy-aware coverage path planning for unmanned aerial vehicles |
spellingShingle |
Energy-aware coverage path planning for unmanned aerial vehicles Cabreira, Tauã Milech CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Computação Coverage path planning Energy-aware UAV Flight pattern Complete algorithm Pheromone-based heuristic Planejamento de caminhos de cobertura Preocupação energética VANT Padrão de voo Algoritmo completo Heurística baseada em feromônio |
title_short |
Energy-aware coverage path planning for unmanned aerial vehicles |
title_full |
Energy-aware coverage path planning for unmanned aerial vehicles |
title_fullStr |
Energy-aware coverage path planning for unmanned aerial vehicles |
title_full_unstemmed |
Energy-aware coverage path planning for unmanned aerial vehicles |
title_sort |
Energy-aware coverage path planning for unmanned aerial vehicles |
author |
Cabreira, Tauã Milech |
author_facet |
Cabreira, Tauã Milech |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0374284601160109 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/0481478169272902 |
dc.contributor.advisor-co1.fl_str_mv |
Brisolara, Lisane Brisolara de |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/9175591364526313 |
dc.contributor.advisor1.fl_str_mv |
Ferreira Júnior, Paulo Roberto |
dc.contributor.author.fl_str_mv |
Cabreira, Tauã Milech |
contributor_str_mv |
Brisolara, Lisane Brisolara de Ferreira Júnior, Paulo Roberto |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO Computação Coverage path planning Energy-aware UAV Flight pattern Complete algorithm Pheromone-based heuristic Planejamento de caminhos de cobertura Preocupação energética VANT Padrão de voo Algoritmo completo Heurística baseada em feromônio |
dc.subject.por.fl_str_mv |
Computação Coverage path planning Energy-aware UAV Flight pattern Complete algorithm Pheromone-based heuristic Planejamento de caminhos de cobertura Preocupação energética VANT Padrão de voo Algoritmo completo Heurística baseada em feromônio |
description |
The Coverage Path Planning (CPP) problem is a motion planning subtopic in robotics, where it is necessary to build a path for a robot to explore every location in a given scenario. Unmanned Aerial Vehicles (UAV) have been employed in several application domains related to the CPP problem. Despite the technological progress related to control systems and energy monitoring, one of the most significant limitations of UAVs is endurance, especially in multirotors. These vehicles have a limited payload, which consequently also restricts their batteries. In this way, minimizing the energy consumption of these vehicles is pivotal to prolong and guarantee the coverage mission. The energy consumption is usually associated with the number of turning maneuvers in a given trajectory. Most studies in literature seek to minimize this issue to save energy and, consequently, enhance endurance. However, important factors are usually ignored, such as the acceleration and deceleration phases, optimal speed to travel a straight distance, the entrance speed and turning angle when performing a maneuver. Thus, this work aims to propose energy-aware coverage path planning solutions based on flight patterns, complete algorithms, and pheromone-based methods for regular and irregular-shaped areas containing full and partial information considering the impact of different aspects in the UAV energy consumption, such as traveled distance, mission execution time, turning maneuvers, optimal speed, and external conditions. First, we present an energy-aware spiral coverage path planning algorithm called E-Spiral. The flight pattern performs missions over regular-shaped areas consisting of concave and convex polygons. The proposed approach considers specific requirement applications, such as overlapping and image resolution, to guarantee a complete area mapping in photogrammetric sensing applications. Furthermore, the algorithm explores an improved energy model to adopt optimal speeds in straight segments of the path to minimize the total energy consumption. Next, we present an energy-aware grid-based coverage path planning algorithm called EG-CPP. The complete algorithm generates coverage paths for mapping missions over irregular-shaped areas containing no-fly zones. Our solution improves an existing grid-based method by replacing its original cost function based on the sum of angles to an energy-aware cost function. As a further contribution, two pruning techniques improve the performance of the algorithm. This improvement speeds up the computational time of the algorithm up to 99%, allowing to explore all the different starting positions in the workspace and saving even more energy. Then, we present an energy-aware pheromone-based solution for patrolling missions called NC-Drone. The approach extends an existing real-time search method aiming at minimizing the number of turning maneuvers while keeping the unpredictable behavior during coverage. We propose two types of NC-Drone, a centralized algorithm and a decentralized one with a few variations. These variations explore a matrix-representation to store the visited cells in the vehicle’s memory and adopt synchronization schemes to share the information between the UAVs. We also propose cooperative strategies to improve the algorithm and further explore the problem considering relevant aspects, such as time, uncertainty, and communication. We combine all NC-Drone strategies into a single solution for the patrolling problem. Therefore, three novel approaches are proposed able to successfully addressing several problems related to different coverage path planning scenarios, advancing the state-of-the-art in this area. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-10-25 |
dc.date.accessioned.fl_str_mv |
2020-08-13T11:59:55Z |
dc.date.available.fl_str_mv |
2020-08-13T11:59:55Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CABREIRA, Tauã Milech. Energy-aware Coverage Path Planning for Unmanned Aerial Vehicles. Advisor: Paulo Roberto Ferreira Junior. 2019. 146 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2019. |
dc.identifier.uri.fl_str_mv |
http://guaiaca.ufpel.edu.br/handle/prefix/6405 |
identifier_str_mv |
CABREIRA, Tauã Milech. Energy-aware Coverage Path Planning for Unmanned Aerial Vehicles. Advisor: Paulo Roberto Ferreira Junior. 2019. 146 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2019. |
url |
http://guaiaca.ufpel.edu.br/handle/prefix/6405 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pelotas |
dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Computação |
dc.publisher.initials.fl_str_mv |
UFPel |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Centro de Desenvolvimento Tecnológico |
publisher.none.fl_str_mv |
Universidade Federal de Pelotas |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPel - Guaiaca instname:Universidade Federal de Pelotas (UFPEL) instacron:UFPEL |
instname_str |
Universidade Federal de Pelotas (UFPEL) |
instacron_str |
UFPEL |
institution |
UFPEL |
reponame_str |
Repositório Institucional da UFPel - Guaiaca |
collection |
Repositório Institucional da UFPel - Guaiaca |
bitstream.url.fl_str_mv |
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/6/Tese_Tau%c3%a3_Milech_Cabreira.pdf.txt http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/7/Tese_Tau%c3%a3_Milech_Cabreira.pdf.jpg http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/1/Tese_Tau%c3%a3_Milech_Cabreira.pdf http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/2/license_url http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/3/license_text http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/4/license_rdf http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/6405/5/license.txt |
bitstream.checksum.fl_str_mv |
1684a4990198433028ebdad6f5240114 f178d4a57dcffc9081ddd076126d993e 799429b957aaee3dcb66a5b9d08c2580 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 43cd690d6a359e86c1fe3d5b7cba0c9b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL) |
repository.mail.fl_str_mv |
rippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.br |
_version_ |
1833858389850980352 |