A new dynamic beta prime model with application to hydro-environmental data

Bibliographic Details
Main Author: SANTOS, Kleber Henrique dos
Publication Date: 2024
Format: Master thesis
Language: eng
Source: Repositório Institucional da UFPE
Download full: https://repositorio.ufpe.br/handle/123456789/57937
Summary: We introduce a dynamic model tailored for positively valued time series. It accommodates both autoregressive and moving average dynamics and allows for explanatory variables. The underlying assumption is that each random variable follows, conditional on the set of previous information, the beta prime distribution. A novel feature of the proposed model is that both the conditional mean and conditional precision evolve over time. The model thus comprises two dynamic submodels, one for each parameter. The proposed model for the conditional precision is parsimonious, incorporating first-order time dependence. Changes over time in the form of the distribution are determined by the time evolution of two parameters, and not just of the conditional mean. We present simple closed-form expressions for the model's conditional log- likelihood function, score vector and Fisher's information matrix. We also present Monte Carlo simulation results on the finite-sample performance of the conditional maximum likelihood estimators of the parameters that index the model. Finally, we use the proposed approach to model and forecast two seasonal water flow time series. Specifically, we model the inflow and outflow rates of the reservoirs of two hydroelectric power plants. Overall, the forecasts obtained using the proposed model are more accurate than those yielded by alternative models.
id UFPE_b83a3b966319f4f13aa60cb6debce06b
oai_identifier_str oai:repositorio.ufpe.br:123456789/57937
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling A new dynamic beta prime model with application to hydro-environmental dataDistribuição beta primeModelo BPARMA generalizadoPrevisãoSéries temporaisPrecisão variávelWe introduce a dynamic model tailored for positively valued time series. It accommodates both autoregressive and moving average dynamics and allows for explanatory variables. The underlying assumption is that each random variable follows, conditional on the set of previous information, the beta prime distribution. A novel feature of the proposed model is that both the conditional mean and conditional precision evolve over time. The model thus comprises two dynamic submodels, one for each parameter. The proposed model for the conditional precision is parsimonious, incorporating first-order time dependence. Changes over time in the form of the distribution are determined by the time evolution of two parameters, and not just of the conditional mean. We present simple closed-form expressions for the model's conditional log- likelihood function, score vector and Fisher's information matrix. We also present Monte Carlo simulation results on the finite-sample performance of the conditional maximum likelihood estimators of the parameters that index the model. Finally, we use the proposed approach to model and forecast two seasonal water flow time series. Specifically, we model the inflow and outflow rates of the reservoirs of two hydroelectric power plants. Overall, the forecasts obtained using the proposed model are more accurate than those yielded by alternative models.Apresentamos um modelo dinâmico para séries temporais que assumem apenas valores positivos. O modelo proposto acomoda dinâmicas autorregressivas e de médias móveis e per- mite a inclusão de variáveis explicativas. A suposição central é que cada variável aleatória segue, condicional ao conjunto de informações anteriores, distribuição beta prime. Uma característica inovadora do modelo proposto é que tanto a média condicional quanto a precisão condicional evoluem ao longo do tempo. O modelo compreende, portanto, dois submodelos dinâmicos, um para cada parâmetro. O modelo proposto para a precisão condicional é parcimonioso, in- corporando dependência temporal de primeira ordem. Mudanças ao longo do tempo na forma da distribuição são determinadas pela evolução temporal dos dois parâmetros, e não apenas da média condicional. Apresentamos expressões simples em forma fechada para a função de log-verossimilhança condicional do modelo, vetor escore condicional e matriz de informação de Fisher condicional. Também apresentamos resultados de simulação de Monte Carlo sobre o desempenho em amostras finitas dos estimadores de máxima verossimilhança condicional dos parâmetros que indexam o modelo. Finalmente, usamos a abordagem proposta para modelar e prever duas séries temporais sazonias de fluxo de água. Especificamente, modelamos as vazões de entrada e saída dos reservatórios de duas usinas hidrelétricas. No geral, as previsões obtidas usando o modelo proposto são mais precisas do que aquelas geradas por modelos alternativos.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaCRIBARI NETO, Franciscohttp://lattes.cnpq.br/2377620323773981http://lattes.cnpq.br/2225977664095899SANTOS, Kleber Henrique dos2024-10-02T13:30:59Z2024-10-02T13:30:59Z2024-02-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSANTOS, Kleber Henrique dos. A new dynamic beta prime model with application to hydro-environmental data. 2024. Dissertação (Mestrado em Estatística) – Universidade Federal de Pernambuco, Recife, 2024.https://repositorio.ufpe.br/handle/123456789/57937engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2024-10-03T05:33:36Zoai:repositorio.ufpe.br:123456789/57937Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212024-10-03T05:33:36Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv A new dynamic beta prime model with application to hydro-environmental data
title A new dynamic beta prime model with application to hydro-environmental data
spellingShingle A new dynamic beta prime model with application to hydro-environmental data
SANTOS, Kleber Henrique dos
Distribuição beta prime
Modelo BPARMA generalizado
Previsão
Séries temporais
Precisão variável
title_short A new dynamic beta prime model with application to hydro-environmental data
title_full A new dynamic beta prime model with application to hydro-environmental data
title_fullStr A new dynamic beta prime model with application to hydro-environmental data
title_full_unstemmed A new dynamic beta prime model with application to hydro-environmental data
title_sort A new dynamic beta prime model with application to hydro-environmental data
author SANTOS, Kleber Henrique dos
author_facet SANTOS, Kleber Henrique dos
author_role author
dc.contributor.none.fl_str_mv CRIBARI NETO, Francisco
http://lattes.cnpq.br/2377620323773981
http://lattes.cnpq.br/2225977664095899
dc.contributor.author.fl_str_mv SANTOS, Kleber Henrique dos
dc.subject.por.fl_str_mv Distribuição beta prime
Modelo BPARMA generalizado
Previsão
Séries temporais
Precisão variável
topic Distribuição beta prime
Modelo BPARMA generalizado
Previsão
Séries temporais
Precisão variável
description We introduce a dynamic model tailored for positively valued time series. It accommodates both autoregressive and moving average dynamics and allows for explanatory variables. The underlying assumption is that each random variable follows, conditional on the set of previous information, the beta prime distribution. A novel feature of the proposed model is that both the conditional mean and conditional precision evolve over time. The model thus comprises two dynamic submodels, one for each parameter. The proposed model for the conditional precision is parsimonious, incorporating first-order time dependence. Changes over time in the form of the distribution are determined by the time evolution of two parameters, and not just of the conditional mean. We present simple closed-form expressions for the model's conditional log- likelihood function, score vector and Fisher's information matrix. We also present Monte Carlo simulation results on the finite-sample performance of the conditional maximum likelihood estimators of the parameters that index the model. Finally, we use the proposed approach to model and forecast two seasonal water flow time series. Specifically, we model the inflow and outflow rates of the reservoirs of two hydroelectric power plants. Overall, the forecasts obtained using the proposed model are more accurate than those yielded by alternative models.
publishDate 2024
dc.date.none.fl_str_mv 2024-10-02T13:30:59Z
2024-10-02T13:30:59Z
2024-02-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SANTOS, Kleber Henrique dos. A new dynamic beta prime model with application to hydro-environmental data. 2024. Dissertação (Mestrado em Estatística) – Universidade Federal de Pernambuco, Recife, 2024.
https://repositorio.ufpe.br/handle/123456789/57937
identifier_str_mv SANTOS, Kleber Henrique dos. A new dynamic beta prime model with application to hydro-environmental data. 2024. Dissertação (Mestrado em Estatística) – Universidade Federal de Pernambuco, Recife, 2024.
url https://repositorio.ufpe.br/handle/123456789/57937
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1834468269947355136