Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defects

Bibliographic Details
Main Author: CORONEL SANCHEZ, Edwin Danelli
Publication Date: 2016
Format: Master thesis
Language: eng
Source: Repositório Institucional da UFPE
Download full: https://repositorio.ufpe.br/handle/123456789/24441
Summary: The control of the radiation-matter interaction, in our case of photons with quan- tum single emitters, as the nitrogen-vacancy (NV) defect in nanodiamonds, is crucial in the process of nano-devices fabrication. This is achieved taking advantage of the latest advances of the nano-optics to increase the interaction with single emitters for which ade-quate tools for precise interaction control has been developed. In this dissertation, we use a home-made inverted optical confocal microscope and coherent manipulation of spin states to study single NV defect in nanodiamonds. The NV defect in nanodiamonds presents optical properties that depend on the spin state of its optically active electrons, which makes them interesting for applications in nanomagnetometry, quantum informa- tion processing and nanobiothermometry. In particular, the negatively charged NV defect (NV-) exhibits single photon emission and long coherence times even at room tempera- ture. Furthermore, it has a paramagnetic ground state and can be optically polarized and read out, in an experimental technique known as Optically Detected Magnetic Resonance (ODMR). In this technique, the intensity of the fluorescence emitted by a nanodiamond depends on the spin configuration of the electronic ground state, from which an electronic transition is excited. In order to study these defects, nanodiamonds were deposited on a photolitographically structured antenna on a coverslip by spin coating and placed on the microscope. The microscope allows to both, the detection of the fluorescence and its exci- tation, by a CW laser emitting at 532 nm. The fluorescence emitted by the nanodiamond is centered around 650 nm with a zero phonon line at 637 nm. The collected fluores¬cence is sent to two avalanche photodiodes (APDs), that are in a configuration known as Hanbury-Brown and Twiss (HBT) interferometer. In it, we can verify whether the col- lected emission comes from an individual emitter, analyzing the second order correlation function g(2)(r): if g(2)(r) < 0.5 we have an emission from single photons generated by a single NV- defect in diamond. Working whit single emitter we could radiate a microwave field over the nanodiamond, which allows us to determine the resonance frequency for spin transitions in the ground state. At resonance one observes a drop in the fluorescence emitted by the nanodiamond. We explore the fact that the resonance frequency of the spin transition depends on the local magnetic field to measure the Zeeman effect gener- ated by the magnetic field of a permanent magnet (NdFeB). Finally, we realized coherent manipulation via an appropriate sequence of pulses of microwave and laser, observing Rabi oscillations. Thus, we can measure the inhomogeneous coherence time (T2*) given by the damping of Rabi oscillations.
id UFPE_94a63d1876929fac2d2c6fb1837c2314
oai_identifier_str oai:repositorio.ufpe.br:123456789/24441
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defectsÓpticaRessonância magnéticaEspectroscopia de alta resoluçãoThe control of the radiation-matter interaction, in our case of photons with quan- tum single emitters, as the nitrogen-vacancy (NV) defect in nanodiamonds, is crucial in the process of nano-devices fabrication. This is achieved taking advantage of the latest advances of the nano-optics to increase the interaction with single emitters for which ade-quate tools for precise interaction control has been developed. In this dissertation, we use a home-made inverted optical confocal microscope and coherent manipulation of spin states to study single NV defect in nanodiamonds. The NV defect in nanodiamonds presents optical properties that depend on the spin state of its optically active electrons, which makes them interesting for applications in nanomagnetometry, quantum informa- tion processing and nanobiothermometry. In particular, the negatively charged NV defect (NV-) exhibits single photon emission and long coherence times even at room tempera- ture. Furthermore, it has a paramagnetic ground state and can be optically polarized and read out, in an experimental technique known as Optically Detected Magnetic Resonance (ODMR). In this technique, the intensity of the fluorescence emitted by a nanodiamond depends on the spin configuration of the electronic ground state, from which an electronic transition is excited. In order to study these defects, nanodiamonds were deposited on a photolitographically structured antenna on a coverslip by spin coating and placed on the microscope. The microscope allows to both, the detection of the fluorescence and its exci- tation, by a CW laser emitting at 532 nm. The fluorescence emitted by the nanodiamond is centered around 650 nm with a zero phonon line at 637 nm. The collected fluores¬cence is sent to two avalanche photodiodes (APDs), that are in a configuration known as Hanbury-Brown and Twiss (HBT) interferometer. In it, we can verify whether the col- lected emission comes from an individual emitter, analyzing the second order correlation function g(2)(r): if g(2)(r) < 0.5 we have an emission from single photons generated by a single NV- defect in diamond. Working whit single emitter we could radiate a microwave field over the nanodiamond, which allows us to determine the resonance frequency for spin transitions in the ground state. At resonance one observes a drop in the fluorescence emitted by the nanodiamond. We explore the fact that the resonance frequency of the spin transition depends on the local magnetic field to measure the Zeeman effect gener- ated by the magnetic field of a permanent magnet (NdFeB). Finally, we realized coherent manipulation via an appropriate sequence of pulses of microwave and laser, observing Rabi oscillations. Thus, we can measure the inhomogeneous coherence time (T2*) given by the damping of Rabi oscillations.FACEPEO controle da interação radiação-matéria, em nosso caso de fotons com emissores quânticos individuais, como os defeitos de nitrogenio-vacancia (NV) em nanodiamantes, e crucial no processo da fabricacao de nano-dispositivos. Isto e conseguido aproveitando-se os ultimos avanços em nano-óptica para aumentar a interacao com emissores unicos, para os quais ferramentas adequadas para o controle preciso da interacao foi desenvolvido. Nesta dissertacao, descreveremos o uso de um microscopio confocal invertido e mani- pulacao coerente dos estados de spin de um defeito individual NV num nanodiamante. Os defeitos NV em nanodiamantes apresentam propriedades opticas que dependem do estado de spin dos seus eletrons opticamente ativos, o que os tornam interessantes para aplicacoes em nanomagnetometria, processamento de informaçao quantica e nanobioter- mometria. Em particular, defeitos NV negativamente carregados (NV-) exibem emissao de fótons unicos e longos tempos de coerência, mesmo a temperatura ambiente. Alem disso, tem um estado fundamental paramagnetico e o sistema pode ser opticamente pola¬rizado e lido, usando-se uma técnica experimental conhecida como Ressonância Magnetica Detectada Opticamente (ODMR). Nesta técnica, a intensidade de fluorescencia emitida pelo nanodiamante depende da configuracao de spin do estado eletrónico fundamental, a partir do qual a transicao eletrónica e excitada. Para estudar esses defeitos NV, nan- odiamantes foram depositados ao longo de uma antena, fotolitograficamente estruturada sobre um coverslip, usando spin coating e colocados sobre o microscopio. O microscopio permite a detecçao da fluorescencia do defeito e sua excitacao e feita por um laser CW emitindo em 532 nm. A fluorescencia emitida pelo nanodiamante ocorre em torno dos 650 nm com uma linha zero fonon em 637 nm. A fluo-rescencia coletada e enviada a dois foto-diodos de avalanche, que estao em configuraçao interferometrica do tipo Hanbury-Brown and Twiss (HBT). Nela, podemos garantir se a emissao coletada provem de um emissor individual, analisando a funcão de correlacão de segunda ordem (T): se g(2)(r) < 0, 5 comprovamos a emissão de fotons ónicos por um unico defeito NV- no nanodiamante. Trabalhamos entãao com um unico defeito NV- como emissor. Irradiando um campo de microondas sobre o nanodiamante, nos permite determinar a frequência de ressonância com a transicao de spin no estado fundamental, evidenciado por uma diminuto da flu- orescencia emitida pelo nanodiamante. Usamos o fato de que a frequencia de ressonancia da transiçao do spin depende do campo magnetico local para observar o efeito Zeeman gerado pelo campo magnetico de um ima (Nd-Fe-B). Finalmente, realizamos manipulacao coerente atraves de uma adequada sequencia de pulsos de microondas e laser, observando oscilações de Rabi. Assim, pudemos medir o tempo de coerência inhomogeneo (T2*) dado pelo amortecimento das oscilacões de Rabi.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em FisicaMENEZES, Leonardo de Souzahttp://lattes.cnpq.br/5058697129820873http://lattes.cnpq.br/0574758575822571CORONEL SANCHEZ, Edwin Danelli2018-04-23T23:42:59Z2018-04-23T23:42:59Z2016-04-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/24441engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T11:13:03Zoai:repositorio.ufpe.br:123456789/24441Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T11:13:03Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defects
title Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defects
spellingShingle Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defects
CORONEL SANCHEZ, Edwin Danelli
Óptica
Ressonância magnética
Espectroscopia de alta resolução
title_short Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defects
title_full Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defects
title_fullStr Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defects
title_full_unstemmed Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defects
title_sort Optically detected magnetic resonance in nanodiamonds with single nitrogen-vacancy defects
author CORONEL SANCHEZ, Edwin Danelli
author_facet CORONEL SANCHEZ, Edwin Danelli
author_role author
dc.contributor.none.fl_str_mv MENEZES, Leonardo de Souza
http://lattes.cnpq.br/5058697129820873
http://lattes.cnpq.br/0574758575822571
dc.contributor.author.fl_str_mv CORONEL SANCHEZ, Edwin Danelli
dc.subject.por.fl_str_mv Óptica
Ressonância magnética
Espectroscopia de alta resolução
topic Óptica
Ressonância magnética
Espectroscopia de alta resolução
description The control of the radiation-matter interaction, in our case of photons with quan- tum single emitters, as the nitrogen-vacancy (NV) defect in nanodiamonds, is crucial in the process of nano-devices fabrication. This is achieved taking advantage of the latest advances of the nano-optics to increase the interaction with single emitters for which ade-quate tools for precise interaction control has been developed. In this dissertation, we use a home-made inverted optical confocal microscope and coherent manipulation of spin states to study single NV defect in nanodiamonds. The NV defect in nanodiamonds presents optical properties that depend on the spin state of its optically active electrons, which makes them interesting for applications in nanomagnetometry, quantum informa- tion processing and nanobiothermometry. In particular, the negatively charged NV defect (NV-) exhibits single photon emission and long coherence times even at room tempera- ture. Furthermore, it has a paramagnetic ground state and can be optically polarized and read out, in an experimental technique known as Optically Detected Magnetic Resonance (ODMR). In this technique, the intensity of the fluorescence emitted by a nanodiamond depends on the spin configuration of the electronic ground state, from which an electronic transition is excited. In order to study these defects, nanodiamonds were deposited on a photolitographically structured antenna on a coverslip by spin coating and placed on the microscope. The microscope allows to both, the detection of the fluorescence and its exci- tation, by a CW laser emitting at 532 nm. The fluorescence emitted by the nanodiamond is centered around 650 nm with a zero phonon line at 637 nm. The collected fluores¬cence is sent to two avalanche photodiodes (APDs), that are in a configuration known as Hanbury-Brown and Twiss (HBT) interferometer. In it, we can verify whether the col- lected emission comes from an individual emitter, analyzing the second order correlation function g(2)(r): if g(2)(r) < 0.5 we have an emission from single photons generated by a single NV- defect in diamond. Working whit single emitter we could radiate a microwave field over the nanodiamond, which allows us to determine the resonance frequency for spin transitions in the ground state. At resonance one observes a drop in the fluorescence emitted by the nanodiamond. We explore the fact that the resonance frequency of the spin transition depends on the local magnetic field to measure the Zeeman effect gener- ated by the magnetic field of a permanent magnet (NdFeB). Finally, we realized coherent manipulation via an appropriate sequence of pulses of microwave and laser, observing Rabi oscillations. Thus, we can measure the inhomogeneous coherence time (T2*) given by the damping of Rabi oscillations.
publishDate 2016
dc.date.none.fl_str_mv 2016-04-28
2018-04-23T23:42:59Z
2018-04-23T23:42:59Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/24441
url https://repositorio.ufpe.br/handle/123456789/24441
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Fisica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Fisica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1834468218397261824