Visual tools to identify influential observations in spatial data

Bibliographic Details
Main Author: OLIVEIRA, Isabel Soares Diniz de
Publication Date: 2021
Format: Master thesis
Language: eng
Source: Repositório Institucional da UFPE
Download full: https://repositorio.ufpe.br/handle/123456789/43661
Summary: We adapted the hair-plot, proposed by Genton and Ruiz-Gazen (2010), to identify and vi- sualize influential observations in spatial data. Three graphic tools were created: the bihair-plot, the principal components hair-plot and functional hair-plot. The first tool depict trajectories of the values of a spatial semivariance estimator when adding a perturbation to each observation of a vector of spatial data observed considering two lags. The second describes trajectories of the principal components of a spatial semivariance estimator values for all lags when each observation of data is perturbed, making it possible to identify influential observations in spa- tial data containing as much information as possible from the data set. The third is obtained from the values of the trace-semivariogram estimator when the data receive a disturbance. The estimators considered in the study were the sample semivariogram for univariate case, sample cross-semivariogram for bivariate case and sample trace-semivariogram for functional data. Another method used to obtain the cross-semivariogram was Minimum Volume Ellipsoid, which is more sensitive to outliers. Based on this, we observed that it is not possible to detect influential observations. We defined the quadratic form of the estimators and the influence function, in order to understand their behavior and properties. Finally, we make an application with these tools in the pollution data for the univariate case, complementing the results shown in Genton and Ruiz-Gazen (2010), the meuse data from the sp package for the bivariate case and average temperatures from the geofd package for the functional case.
id UFPE_4b89a3121e17147d0d069dfa9815eb9f
oai_identifier_str oai:repositorio.ufpe.br:123456789/43661
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str 2221
spelling Visual tools to identify influential observations in spatial dataEstatística AplicadaAnálise de dados funcionaisDados espaciais influentesSemivariogramaWe adapted the hair-plot, proposed by Genton and Ruiz-Gazen (2010), to identify and vi- sualize influential observations in spatial data. Three graphic tools were created: the bihair-plot, the principal components hair-plot and functional hair-plot. The first tool depict trajectories of the values of a spatial semivariance estimator when adding a perturbation to each observation of a vector of spatial data observed considering two lags. The second describes trajectories of the principal components of a spatial semivariance estimator values for all lags when each observation of data is perturbed, making it possible to identify influential observations in spa- tial data containing as much information as possible from the data set. The third is obtained from the values of the trace-semivariogram estimator when the data receive a disturbance. The estimators considered in the study were the sample semivariogram for univariate case, sample cross-semivariogram for bivariate case and sample trace-semivariogram for functional data. Another method used to obtain the cross-semivariogram was Minimum Volume Ellipsoid, which is more sensitive to outliers. Based on this, we observed that it is not possible to detect influential observations. We defined the quadratic form of the estimators and the influence function, in order to understand their behavior and properties. Finally, we make an application with these tools in the pollution data for the univariate case, complementing the results shown in Genton and Ruiz-Gazen (2010), the meuse data from the sp package for the bivariate case and average temperatures from the geofd package for the functional case.Adaptamos o hair-plot, proposto por Genton and Ruiz-Gazen (2010), para identificar e visualizar observações influentes em dados espaciais. Três ferramentas gráficas foram criadas: o bihair-plot, os principais componentes do hair-plot e o hair-plot funcional. A primeira ferra- menta descreve trajetórias dos valores de um estimador de semivariância espacial ao adicionar uma perturbação a cada observação de um vetor de dados espaciais observado considerando dois lags. O segundo descreve as trajetórias dos componentes principais de um estimador de semivariância espacial para todos os lags quando cada observação de dados é perturbada, tornando possível identificar observações influentes em dados espaciais contendo o máximo de informações possível do conjunto de dados. O terceiro é obtido a partir dos valores do esti- mador do trace-semivariogram quando os dados recebem uma perturbação. Os estimadores considerados no estudo foram o semivariograma de amostra para caso univariado, semivario- grama cruzado de amostra para caso bivariado e trace-semivariograma amostral para dados funcionais. Outro método utilizado para obter o semivariograma cruzado foi o Elipsóide de Volume Mínimo, que é mais sensível a outliers. Com base nisso, observamos que não é possí- vel detectar observações influentes. Definimos a forma quadrática dos estimadores e a função de influência, a fim de compreender seu comportamento e propriedades. Finalmente, fazemos uma aplicação com essas ferramentas nos dados de poluição para o caso univariado, comple- mentando os resultados mostrados em Genton and Ruiz-Gazen (2010), os dados meuse do pacote sp para o caso bivariado e dados de temperaturas médias do pacote geofd para o caso funcional, inicialmente obtidas do Serviço Meteorológico do Canadá.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaDE BASTIANI, Fernandahttp://lattes.cnpq.br/2198421357007814http://lattes.cnpq.br/5519064508209103OLIVEIRA, Isabel Soares Diniz de2022-04-04T13:16:04Z2022-04-04T13:16:04Z2021-10-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfOLIVEIRA, Isabel Soares Diniz de. Visual tools to identify influential observations in spatial data. 2021. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/43661engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2022-04-05T05:14:56Zoai:repositorio.ufpe.br:123456789/43661Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-04-05T05:14:56Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Visual tools to identify influential observations in spatial data
title Visual tools to identify influential observations in spatial data
spellingShingle Visual tools to identify influential observations in spatial data
OLIVEIRA, Isabel Soares Diniz de
Estatística Aplicada
Análise de dados funcionais
Dados espaciais influentes
Semivariograma
title_short Visual tools to identify influential observations in spatial data
title_full Visual tools to identify influential observations in spatial data
title_fullStr Visual tools to identify influential observations in spatial data
title_full_unstemmed Visual tools to identify influential observations in spatial data
title_sort Visual tools to identify influential observations in spatial data
author OLIVEIRA, Isabel Soares Diniz de
author_facet OLIVEIRA, Isabel Soares Diniz de
author_role author
dc.contributor.none.fl_str_mv DE BASTIANI, Fernanda
http://lattes.cnpq.br/2198421357007814
http://lattes.cnpq.br/5519064508209103
dc.contributor.author.fl_str_mv OLIVEIRA, Isabel Soares Diniz de
dc.subject.por.fl_str_mv Estatística Aplicada
Análise de dados funcionais
Dados espaciais influentes
Semivariograma
topic Estatística Aplicada
Análise de dados funcionais
Dados espaciais influentes
Semivariograma
description We adapted the hair-plot, proposed by Genton and Ruiz-Gazen (2010), to identify and vi- sualize influential observations in spatial data. Three graphic tools were created: the bihair-plot, the principal components hair-plot and functional hair-plot. The first tool depict trajectories of the values of a spatial semivariance estimator when adding a perturbation to each observation of a vector of spatial data observed considering two lags. The second describes trajectories of the principal components of a spatial semivariance estimator values for all lags when each observation of data is perturbed, making it possible to identify influential observations in spa- tial data containing as much information as possible from the data set. The third is obtained from the values of the trace-semivariogram estimator when the data receive a disturbance. The estimators considered in the study were the sample semivariogram for univariate case, sample cross-semivariogram for bivariate case and sample trace-semivariogram for functional data. Another method used to obtain the cross-semivariogram was Minimum Volume Ellipsoid, which is more sensitive to outliers. Based on this, we observed that it is not possible to detect influential observations. We defined the quadratic form of the estimators and the influence function, in order to understand their behavior and properties. Finally, we make an application with these tools in the pollution data for the univariate case, complementing the results shown in Genton and Ruiz-Gazen (2010), the meuse data from the sp package for the bivariate case and average temperatures from the geofd package for the functional case.
publishDate 2021
dc.date.none.fl_str_mv 2021-10-28
2022-04-04T13:16:04Z
2022-04-04T13:16:04Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv OLIVEIRA, Isabel Soares Diniz de. Visual tools to identify influential observations in spatial data. 2021. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2021.
https://repositorio.ufpe.br/handle/123456789/43661
identifier_str_mv OLIVEIRA, Isabel Soares Diniz de. Visual tools to identify influential observations in spatial data. 2021. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2021.
url https://repositorio.ufpe.br/handle/123456789/43661
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1834468270499954688