Export Ready — 

The development of logical-mathematical instruments and concepts of Kurt Gödel's First Incompleteness Theorem

Bibliographic Details
Main Author: Bório de Medeiros, Bismarck
Publication Date: 2024
Format: Article
Language: por
Source: Perspectiva Filosófica (Online)
Download full: https://periodicos.ufpe.br/revistas/perspectivafilosofica/article/view/258607
Summary: The article seeks to elucidate the investigations and advances in Mathematics and Logicassociated with philosophical conceptions that culminated in Kurt Gödel's First Incompleteness Theorem. For this, we will make a historical and conceptual approach to Mathematics from the second half of the 19th century to the first half of the 20th century, indicating elements and mathematical instruments developed to solve problems, as well as philosophical assumptions and commitments that accompany activities aimed at the formalization and foundation of contemporary mathematical logic that helped Gödel to elaborate his demonstration and clarify the limitations of formal systems with a minimum of Arithmetic. In this way, we will deal with how the problems from the establishment of non-Euclidean geometries and the Set Theory culminated in different lines of research focused on the foundations of Mathematics, as well as the discovery of paradoxes and the controversial notion of the Infinite demanded finitary and recursive methods, such as instruments created for mathematical demonstrations in this period helped in the emergence of metamathematics until Gödel's proof. At the end, we will make a general synthesis and reflection on this intellectual enterprise in the progress of mathematical investigation itself.
id UFPE-10_0affe84e12ddf4c90fc78f85a2f7c6b2
oai_identifier_str oai:oai.periodicos.ufpe.br:article/258607
network_acronym_str UFPE-10
network_name_str Perspectiva Filosófica (Online)
repository_id_str
spelling The development of logical-mathematical instruments and concepts of Kurt Gödel's First Incompleteness TheoremO desenvolvimento dos instrumentos e conceitos lógico-matemáticos do Primeiro Teorema da Incompletude de Kurt Gödeldiagonalizaçãofinitismogeometrias não-euclidianasincompletudeparadoxosPrograma de HilbertdiagonalizationfinitismHilbert's Programincompletenessnon-euclidean geometriesparadoxesThe article seeks to elucidate the investigations and advances in Mathematics and Logicassociated with philosophical conceptions that culminated in Kurt Gödel's First Incompleteness Theorem. For this, we will make a historical and conceptual approach to Mathematics from the second half of the 19th century to the first half of the 20th century, indicating elements and mathematical instruments developed to solve problems, as well as philosophical assumptions and commitments that accompany activities aimed at the formalization and foundation of contemporary mathematical logic that helped Gödel to elaborate his demonstration and clarify the limitations of formal systems with a minimum of Arithmetic. In this way, we will deal with how the problems from the establishment of non-Euclidean geometries and the Set Theory culminated in different lines of research focused on the foundations of Mathematics, as well as the discovery of paradoxes and the controversial notion of the Infinite demanded finitary and recursive methods, such as instruments created for mathematical demonstrations in this period helped in the emergence of metamathematics until Gödel's proof. At the end, we will make a general synthesis and reflection on this intellectual enterprise in the progress of mathematical investigation itself.O artigo busca elucidar as investigações e avanços na Matemática e na Lógica associadas às concepções filosóficas que culminaram no Primeiro Teorema da Incompletude de Kurt Gödel. Para isso, faremos uma abordagem histórica e conceitual da Matemática da segunda metade do século XIX até a primeira metade do século XX, indicando elementos e instrumentos matemáticos desenvolvidos para solução de problemas, assim como pressupostos e compromissos filosóficos que acompanharam as atividades voltadas à formalização e fundamentação da lógica matemática contemporânea que auxiliaram Gödel a elaborar sua demonstração e esclarecer as limitações de sistemas formais com o mínimo de Aritmética. Desta maneira, trataremos de como os problemas a partir do estabelecimento das geometrias não-euclidianas e da Teoria de Conjuntos culminaram em diferentes linhas de pesquisa voltadas aos fundamentos da Matemática, assim como o descobrimento de paradoxos e a controversa noção do Infinito demandaram métodos finitários e recursivos, assim como instrumentos criados para demonstrações matemáticas neste período auxiliaram no surgimento da metamatemática até a prova de Gödel. Ao final, faremos uma síntese geral e reflexão sobre este empreendimento intelectual no progresso da própria investigação matemática.  Universidade Federal de Pernambuco (UFPE)2024-02-15info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufpe.br/revistas/perspectivafilosofica/article/view/25860710.51359/2357-9986.2023.258607Perspectiva Filosófica; Vol. 50 No. 3 (2023): Origens da Filosofia Contemporânea; 394-439Perspectiva Filosófica; Vol. 50 Núm. 3 (2023): Orígenes de la filosofía contemporánea; 394-439Perspectiva Filosófica; v. 50 n. 3 (2023): Origens da Filosofia Contemporânea; 394-4392357-99860104-6454reponame:Perspectiva Filosófica (Online)instname:Universidade Federal de Pernambuco (UFPE)instacron:UFPEporhttps://periodicos.ufpe.br/revistas/perspectivafilosofica/article/view/258607/45188Copyright (c) 2023 Bismarck Bório de Medeirosinfo:eu-repo/semantics/openAccessBório de Medeiros, Bismarck2024-02-16T00:47:30Zoai:oai.periodicos.ufpe.br:article/258607Revistahttps://periodicos.ufpe.br/revistas/perspectivafilosofica/indexPUBhttps://periodicos.ufpe.br/revistas/perspectivafilosofica/oairevistaperspectivafilosofica@gmail.com2357-99860104-6454opendoar:2024-02-16T00:47:30Perspectiva Filosófica (Online) - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv The development of logical-mathematical instruments and concepts of Kurt Gödel's First Incompleteness Theorem
O desenvolvimento dos instrumentos e conceitos lógico-matemáticos do Primeiro Teorema da Incompletude de Kurt Gödel
title The development of logical-mathematical instruments and concepts of Kurt Gödel's First Incompleteness Theorem
spellingShingle The development of logical-mathematical instruments and concepts of Kurt Gödel's First Incompleteness Theorem
Bório de Medeiros, Bismarck
diagonalização
finitismo
geometrias não-euclidianas
incompletude
paradoxos
Programa de Hilbert
diagonalization
finitism
Hilbert's Program
incompleteness
non-euclidean geometries
paradoxes
title_short The development of logical-mathematical instruments and concepts of Kurt Gödel's First Incompleteness Theorem
title_full The development of logical-mathematical instruments and concepts of Kurt Gödel's First Incompleteness Theorem
title_fullStr The development of logical-mathematical instruments and concepts of Kurt Gödel's First Incompleteness Theorem
title_full_unstemmed The development of logical-mathematical instruments and concepts of Kurt Gödel's First Incompleteness Theorem
title_sort The development of logical-mathematical instruments and concepts of Kurt Gödel's First Incompleteness Theorem
author Bório de Medeiros, Bismarck
author_facet Bório de Medeiros, Bismarck
author_role author
dc.contributor.author.fl_str_mv Bório de Medeiros, Bismarck
dc.subject.por.fl_str_mv diagonalização
finitismo
geometrias não-euclidianas
incompletude
paradoxos
Programa de Hilbert
diagonalization
finitism
Hilbert's Program
incompleteness
non-euclidean geometries
paradoxes
topic diagonalização
finitismo
geometrias não-euclidianas
incompletude
paradoxos
Programa de Hilbert
diagonalization
finitism
Hilbert's Program
incompleteness
non-euclidean geometries
paradoxes
description The article seeks to elucidate the investigations and advances in Mathematics and Logicassociated with philosophical conceptions that culminated in Kurt Gödel's First Incompleteness Theorem. For this, we will make a historical and conceptual approach to Mathematics from the second half of the 19th century to the first half of the 20th century, indicating elements and mathematical instruments developed to solve problems, as well as philosophical assumptions and commitments that accompany activities aimed at the formalization and foundation of contemporary mathematical logic that helped Gödel to elaborate his demonstration and clarify the limitations of formal systems with a minimum of Arithmetic. In this way, we will deal with how the problems from the establishment of non-Euclidean geometries and the Set Theory culminated in different lines of research focused on the foundations of Mathematics, as well as the discovery of paradoxes and the controversial notion of the Infinite demanded finitary and recursive methods, such as instruments created for mathematical demonstrations in this period helped in the emergence of metamathematics until Gödel's proof. At the end, we will make a general synthesis and reflection on this intellectual enterprise in the progress of mathematical investigation itself.
publishDate 2024
dc.date.none.fl_str_mv 2024-02-15
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufpe.br/revistas/perspectivafilosofica/article/view/258607
10.51359/2357-9986.2023.258607
url https://periodicos.ufpe.br/revistas/perspectivafilosofica/article/view/258607
identifier_str_mv 10.51359/2357-9986.2023.258607
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://periodicos.ufpe.br/revistas/perspectivafilosofica/article/view/258607/45188
dc.rights.driver.fl_str_mv Copyright (c) 2023 Bismarck Bório de Medeiros
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2023 Bismarck Bório de Medeiros
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco (UFPE)
publisher.none.fl_str_mv Universidade Federal de Pernambuco (UFPE)
dc.source.none.fl_str_mv Perspectiva Filosófica; Vol. 50 No. 3 (2023): Origens da Filosofia Contemporânea; 394-439
Perspectiva Filosófica; Vol. 50 Núm. 3 (2023): Orígenes de la filosofía contemporánea; 394-439
Perspectiva Filosófica; v. 50 n. 3 (2023): Origens da Filosofia Contemporânea; 394-439
2357-9986
0104-6454
reponame:Perspectiva Filosófica (Online)
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Perspectiva Filosófica (Online)
collection Perspectiva Filosófica (Online)
repository.name.fl_str_mv Perspectiva Filosófica (Online) - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv revistaperspectivafilosofica@gmail.com
_version_ 1839551724988137472