Método híbrido baseado em aprendizado de máquina e programação linear inteira para o problema de detecção de incertezas especulativas em textos

Detalhes bibliográficos
Autor(a) principal: Quinho, Marcelo Coelho
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Biblioteca Digital de Teses e Dissertações da UNIFOR
Texto Completo: https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/97315
Resumo: Identificar informações incertas ou não confiáveis em textos é fundamental para sistemas de extração de informação, pois somente informações baseadas em fatos, livre de incertezas, devem ser transmitidas para os usuários. A literatura sobre detecção de incerteza em textos contém diversos trabalhos que utilizam Aprendizado de Máquina (AM) para identificar partes do texto que não são baseados em fatos. Os trabalhos dividem o problema em três subproblemas de classificação e em seguida aplicam pós-processamento com heurísticas para retirada de inconsistências das saídas dos classificadores. Esta dissertação propõe uma metodologia híbrida baseada em AM e Programação Linear Inteira (PLI) para detectar incertezas em textos. A metodologia proposta é composta de três etapas: (1) a primeira etapa consiste no pré-processamento do texto para inclusão de informações linguísticas; (2) a segunda etapa, consiste em utilizar classificadores locais treinados com o uso de AM; (3) a terceira etapa, consiste em combinar os resultados dos classificadores locais usando um mecanismo de inferência que explora a estrutura global do problema, descartando a necessidade do uso de heurísticas. A principal contribuição da metodologia proposta, bem como desta dissertação, é o modelo de PLI proposto na etapa 3. Para verificar a viabilidade da metodologia, foi desenvolvida uma ferramenta que permitiu a aplicação num estudo de caso da área biomédica. A contribuição da combinação da saída dos classificadores com o uso de PLI é examinada a partir da comparação dos resultados produzidos quando essa etapa é substituída por um conjunto de heurísticas. Os resultados experimentais evidenciam uma melhora de 3,7 pontos na medida F ao utilizar a etapa de PLI ao invés das heurísticas. Palavras-chave: Detecção de Incertezas; Aprendizado de Máquina; Processamento em Linguagem Natural; Programação Linear Inteira
id UFOR_fd4291e0d45af8f4a34c4e8c19e6e43b
oai_identifier_str oai::97315
network_acronym_str UFOR
network_name_str Biblioteca Digital de Teses e Dissertações da UNIFOR
repository_id_str
spelling Método híbrido baseado em aprendizado de máquina e programação linear inteira para o problema de detecção de incertezas especulativas em textosAprendizado computacionalProgramação linearLinguagem naturalIdentificar informações incertas ou não confiáveis em textos é fundamental para sistemas de extração de informação, pois somente informações baseadas em fatos, livre de incertezas, devem ser transmitidas para os usuários. A literatura sobre detecção de incerteza em textos contém diversos trabalhos que utilizam Aprendizado de Máquina (AM) para identificar partes do texto que não são baseados em fatos. Os trabalhos dividem o problema em três subproblemas de classificação e em seguida aplicam pós-processamento com heurísticas para retirada de inconsistências das saídas dos classificadores. Esta dissertação propõe uma metodologia híbrida baseada em AM e Programação Linear Inteira (PLI) para detectar incertezas em textos. A metodologia proposta é composta de três etapas: (1) a primeira etapa consiste no pré-processamento do texto para inclusão de informações linguísticas; (2) a segunda etapa, consiste em utilizar classificadores locais treinados com o uso de AM; (3) a terceira etapa, consiste em combinar os resultados dos classificadores locais usando um mecanismo de inferência que explora a estrutura global do problema, descartando a necessidade do uso de heurísticas. A principal contribuição da metodologia proposta, bem como desta dissertação, é o modelo de PLI proposto na etapa 3. Para verificar a viabilidade da metodologia, foi desenvolvida uma ferramenta que permitiu a aplicação num estudo de caso da área biomédica. A contribuição da combinação da saída dos classificadores com o uso de PLI é examinada a partir da comparação dos resultados produzidos quando essa etapa é substituída por um conjunto de heurísticas. Os resultados experimentais evidenciam uma melhora de 3,7 pontos na medida F ao utilizar a etapa de PLI ao invés das heurísticas. Palavras-chave: Detecção de Incertezas; Aprendizado de Máquina; Processamento em Linguagem Natural; Programação Linear InteiraIdentifying unreliable or uncertain information in texts is fundamental for information extraction systems, as only information based on facts, free from uncertainties should be communicated to users. The literature on the detection of uncertainty texts contains many works that use Machine Learning (ML) to identify parts of the text that are not based on facts. The work divides the problem into three subproblems of classification and then applying post-processing with heuristics for removal of inconsistencies of outputs of classifiers. This work proposes a hybrid methodology based on ML and Integer Linear Programming (ILP) to detect uncertainties texts. The methodology consists of three steps: (1) the first step consists in pre-processing text for inclusion of linguistic information, (2) the second step consists in using local classifiers trained using AM; (3) the third step is to combine the results of local classifiers using an inference procedure that exploits the global structure of the problem, ruling out the need for the use of heuristics. The main contribution of the proposed methodology as well as this dissertation is the ILP model proposed in step 3. To verify the feasibility of the methodology, we developed a tool that allowed the application on a case study in biomedicine. The contribution of the combination of the output of the classifiers with the use of ILP is examined based on the comparison results produced when this step is replaced by a set of heuristics. The experimental results showed an improvement of 3.7 points when using the measure F of ILP step instead of heuristics. Keywords: Detection of Uncertainty; Machine Learning; Natural Language Processing; Integer Linear ProgrammingSantos, Cícero Nogueira dosPinheiro, Plácido RogérioSantos, Cícero Nogueira dosPinheiro, Plácido RogérioCoelho, Andre Luis VasconcelosSouza, Criston Pereira deUniversidade de Fortaleza. Programa de Pós-Graduação em Informática AplicadaQuinho, Marcelo Coelho2012info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/97315https://uol.unifor.br/auth-sophia/exibicao/9526Disponibilidade forma física: Existe obra impressa de código : 90049porreponame:Biblioteca Digital de Teses e Dissertações da UNIFORinstname:Universidade de Fortaleza (UNIFOR)instacron:UNIFORinfo:eu-repo/semantics/openAccess1899-12-30T00:00:00Zoai::97315Biblioteca Digital de Teses e Dissertaçõeshttps://www.unifor.br/bdtdONGhttp://dspace.unifor.br/oai/requestbib@unifor.br||bib@unifor.bropendoar:1899-12-30T00:00Biblioteca Digital de Teses e Dissertações da UNIFOR - Universidade de Fortaleza (UNIFOR)false
dc.title.none.fl_str_mv Método híbrido baseado em aprendizado de máquina e programação linear inteira para o problema de detecção de incertezas especulativas em textos
title Método híbrido baseado em aprendizado de máquina e programação linear inteira para o problema de detecção de incertezas especulativas em textos
spellingShingle Método híbrido baseado em aprendizado de máquina e programação linear inteira para o problema de detecção de incertezas especulativas em textos
Quinho, Marcelo Coelho
Aprendizado computacional
Programação linear
Linguagem natural
title_short Método híbrido baseado em aprendizado de máquina e programação linear inteira para o problema de detecção de incertezas especulativas em textos
title_full Método híbrido baseado em aprendizado de máquina e programação linear inteira para o problema de detecção de incertezas especulativas em textos
title_fullStr Método híbrido baseado em aprendizado de máquina e programação linear inteira para o problema de detecção de incertezas especulativas em textos
title_full_unstemmed Método híbrido baseado em aprendizado de máquina e programação linear inteira para o problema de detecção de incertezas especulativas em textos
title_sort Método híbrido baseado em aprendizado de máquina e programação linear inteira para o problema de detecção de incertezas especulativas em textos
author Quinho, Marcelo Coelho
author_facet Quinho, Marcelo Coelho
author_role author
dc.contributor.none.fl_str_mv Santos, Cícero Nogueira dos
Pinheiro, Plácido Rogério
Santos, Cícero Nogueira dos
Pinheiro, Plácido Rogério
Coelho, Andre Luis Vasconcelos
Souza, Criston Pereira de
Universidade de Fortaleza. Programa de Pós-Graduação em Informática Aplicada
dc.contributor.author.fl_str_mv Quinho, Marcelo Coelho
dc.subject.por.fl_str_mv Aprendizado computacional
Programação linear
Linguagem natural
topic Aprendizado computacional
Programação linear
Linguagem natural
description Identificar informações incertas ou não confiáveis em textos é fundamental para sistemas de extração de informação, pois somente informações baseadas em fatos, livre de incertezas, devem ser transmitidas para os usuários. A literatura sobre detecção de incerteza em textos contém diversos trabalhos que utilizam Aprendizado de Máquina (AM) para identificar partes do texto que não são baseados em fatos. Os trabalhos dividem o problema em três subproblemas de classificação e em seguida aplicam pós-processamento com heurísticas para retirada de inconsistências das saídas dos classificadores. Esta dissertação propõe uma metodologia híbrida baseada em AM e Programação Linear Inteira (PLI) para detectar incertezas em textos. A metodologia proposta é composta de três etapas: (1) a primeira etapa consiste no pré-processamento do texto para inclusão de informações linguísticas; (2) a segunda etapa, consiste em utilizar classificadores locais treinados com o uso de AM; (3) a terceira etapa, consiste em combinar os resultados dos classificadores locais usando um mecanismo de inferência que explora a estrutura global do problema, descartando a necessidade do uso de heurísticas. A principal contribuição da metodologia proposta, bem como desta dissertação, é o modelo de PLI proposto na etapa 3. Para verificar a viabilidade da metodologia, foi desenvolvida uma ferramenta que permitiu a aplicação num estudo de caso da área biomédica. A contribuição da combinação da saída dos classificadores com o uso de PLI é examinada a partir da comparação dos resultados produzidos quando essa etapa é substituída por um conjunto de heurísticas. Os resultados experimentais evidenciam uma melhora de 3,7 pontos na medida F ao utilizar a etapa de PLI ao invés das heurísticas. Palavras-chave: Detecção de Incertezas; Aprendizado de Máquina; Processamento em Linguagem Natural; Programação Linear Inteira
publishDate 2012
dc.date.none.fl_str_mv 2012
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/97315
url https://biblioteca.sophia.com.br/terminalri/9575/acervo/detalhe/97315
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://uol.unifor.br/auth-sophia/exibicao/9526
Disponibilidade forma física: Existe obra impressa de código : 90049
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNIFOR
instname:Universidade de Fortaleza (UNIFOR)
instacron:UNIFOR
instname_str Universidade de Fortaleza (UNIFOR)
instacron_str UNIFOR
institution UNIFOR
reponame_str Biblioteca Digital de Teses e Dissertações da UNIFOR
collection Biblioteca Digital de Teses e Dissertações da UNIFOR
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNIFOR - Universidade de Fortaleza (UNIFOR)
repository.mail.fl_str_mv bib@unifor.br||bib@unifor.br
_version_ 1846365149558996992