Export Ready — 

Fixação de arsênio em resíduos da mineração de ouro: mecanismo e aplicação

Bibliographic Details
Main Author: Fernando Luiz Pantuzzo
Publication Date: 2008
Format: Doctoral thesis
Language: por
Source: Repositório Institucional da UFMG
Download full: http://hdl.handle.net/1843/RAOA-BCTKCC
Summary: The aim of the present work was to investigate arsenic association, mineralogy and potential mobility from industrial residues and synthetic metallic arsenates. Samples of industrial residues collected in a gold extraction plant have been initially used. They were disposed during a period between one and two decades. Arsenic was shown to occur as As(V) species, predominantly in the form of amorphous iron arsenate (55 - 75 %Astotal) and sorbed onto amorphous iron oxi-hydroxides (20 - 37 %Astotal). Evidences of the presence of Ca-arsenate phases (indefinite composition) and Al-arsenate coprecipitation are provided. Gypsum (CaSO4.2H2O) was the predominant phase in the bulk residues, and its controlled leaching (via conductivity) with water resulted in a reduction of bulk mass as high as 70%, with potential arsenic release up to 3.5% Astotal. This amount corresponds to a maximum of 0.7g.kg-1 of potentially mobile arsenic. It was also observed a passive enrichment of iron in the oldest residues (14- 21 years), as well as a relative low concentration of Ca, S and As if compared to the more recent residues (7-14 years). These findings suggest that a process of remobilization, attributed to the dissolution of a Ca-arsenate phase (e.g. CaHAsO4.H2O) and a fraction of gypsum (formed during As precipitation from the process effluent process), took place along the two decades. The present enriched iron concentration (Fe/As= 6.0 currently vs. 0.4 in the effluent treatment) also suggest an increased arsenic stability for the oldest residues, if compared with the most recent ones (7 to 14 years old). Structural transformations of the amorphous co-precipitates into more ordered phases were not identified, even after 21 years of disposal. The Alarsenate association in the industrial coprecipitates motivated the investigation of solubility of an amorphous aluminum arsenate phase synthesized in laboratory. Under conditions of congruent dissolution (pH = 2.7), a Ksp value of 10-17.9 ± 0.07 at 25°C was determined for the compound with the chemical formula AlAsO4.3.4H2O. In order to better understand the mechanism of arsenic immobilization, Fe(III)-As(V) materials were also synthesized at different pH conditions (1.5, 4, 6 and 8) and Fe/As molar ratios (1:1, 2:1 and 4:1). The sample formed at pH 1.5 (Fe/As=1:1) was characterized as FeAsO4.1.8H2O. In the samples produced from Fe/As=4 solutions, arsenic was found to coprecipitate with ferryhydrite or schwertmannite, the latter in the presence of sulfate. The specifically sorbed arsenic was evaluated through selective leaching with phosphate solution. The sorbed arsenic increased with the pH increase (changing from 6% Astotal at pH 6 to 85% Astotal at pH 8) and was little affected by the increase of Fe/As molar ratio (from 1:1 to 4:1) staying between 20% and 25% Astotal. The analyses of the products formed during the partial thermal decomposition of the amorphous materials, allowed to infer the increase of amount of ferryhydrite with the increase of pH. The increase of the Fe/As molar ratio led to the presence of amorphous hydrated phases with Fe/As=2 and 3, in addition to the presence of amorphous FeAsO4.xH2O, ferrihydrite and schwertmannite (in sulfate media, pH4).The overall results allow us to conclude that the highest and lowest arsenic removal can not be correlated to the predominance of adsorption or precipitation mechanisms. It is rather correlated with the nature of the precipitate formed during the removal process. Furthermore, the longterm behavior of the slimes confirms the participation of mechanisms, adsorption and coprecipitation, as well as the prevailing role of iron in the immobilization of arsenic in mining sites.
id UFMG_bb017f49c7af1f9c9f7115e10a54cea8
oai_identifier_str oai:repositorio.ufmg.br:1843/RAOA-BCTKCC
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Fixação de arsênio em resíduos da mineração de ouro: mecanismo e aplicaçãoEngenharia metalúrgicaTecnologia mineralArsenioOuro Minas e mineraçãoEngenharia de minasThe aim of the present work was to investigate arsenic association, mineralogy and potential mobility from industrial residues and synthetic metallic arsenates. Samples of industrial residues collected in a gold extraction plant have been initially used. They were disposed during a period between one and two decades. Arsenic was shown to occur as As(V) species, predominantly in the form of amorphous iron arsenate (55 - 75 %Astotal) and sorbed onto amorphous iron oxi-hydroxides (20 - 37 %Astotal). Evidences of the presence of Ca-arsenate phases (indefinite composition) and Al-arsenate coprecipitation are provided. Gypsum (CaSO4.2H2O) was the predominant phase in the bulk residues, and its controlled leaching (via conductivity) with water resulted in a reduction of bulk mass as high as 70%, with potential arsenic release up to 3.5% Astotal. This amount corresponds to a maximum of 0.7g.kg-1 of potentially mobile arsenic. It was also observed a passive enrichment of iron in the oldest residues (14- 21 years), as well as a relative low concentration of Ca, S and As if compared to the more recent residues (7-14 years). These findings suggest that a process of remobilization, attributed to the dissolution of a Ca-arsenate phase (e.g. CaHAsO4.H2O) and a fraction of gypsum (formed during As precipitation from the process effluent process), took place along the two decades. The present enriched iron concentration (Fe/As= 6.0 currently vs. 0.4 in the effluent treatment) also suggest an increased arsenic stability for the oldest residues, if compared with the most recent ones (7 to 14 years old). Structural transformations of the amorphous co-precipitates into more ordered phases were not identified, even after 21 years of disposal. The Alarsenate association in the industrial coprecipitates motivated the investigation of solubility of an amorphous aluminum arsenate phase synthesized in laboratory. Under conditions of congruent dissolution (pH = 2.7), a Ksp value of 10-17.9 ± 0.07 at 25°C was determined for the compound with the chemical formula AlAsO4.3.4H2O. In order to better understand the mechanism of arsenic immobilization, Fe(III)-As(V) materials were also synthesized at different pH conditions (1.5, 4, 6 and 8) and Fe/As molar ratios (1:1, 2:1 and 4:1). The sample formed at pH 1.5 (Fe/As=1:1) was characterized as FeAsO4.1.8H2O. In the samples produced from Fe/As=4 solutions, arsenic was found to coprecipitate with ferryhydrite or schwertmannite, the latter in the presence of sulfate. The specifically sorbed arsenic was evaluated through selective leaching with phosphate solution. The sorbed arsenic increased with the pH increase (changing from 6% Astotal at pH 6 to 85% Astotal at pH 8) and was little affected by the increase of Fe/As molar ratio (from 1:1 to 4:1) staying between 20% and 25% Astotal. The analyses of the products formed during the partial thermal decomposition of the amorphous materials, allowed to infer the increase of amount of ferryhydrite with the increase of pH. The increase of the Fe/As molar ratio led to the presence of amorphous hydrated phases with Fe/As=2 and 3, in addition to the presence of amorphous FeAsO4.xH2O, ferrihydrite and schwertmannite (in sulfate media, pH4).The overall results allow us to conclude that the highest and lowest arsenic removal can not be correlated to the predominance of adsorption or precipitation mechanisms. It is rather correlated with the nature of the precipitate formed during the removal process. Furthermore, the longterm behavior of the slimes confirms the participation of mechanisms, adsorption and coprecipitation, as well as the prevailing role of iron in the immobilization of arsenic in mining sites.Este trabalho teve como objetivo investigar a associação do arsênio (As) em fase sólida, sua mineralogia e seu potencial de mobilidade a partir de resíduos sólidos e de arsenatos metálicos sintéticos. Inicialmente foram utilizadas amostras de resíduos industriais coletados em uma usina de extração de ouro, onde se encontravam dispostos em valas durante um período entre uma e duas décadas. Os materiais foram gerados a partir de efluentes de processo, através da coprecipitação do As com ferro e cal. Os resultados demonstraram a ocorrência da espécie As(V), predominantemente como arsenato de ferro amorfo (53-75 %Astotal) e adsorvido em oxi-hidróxidos amorfos de ferro (20-37 %Astotal). Evidências sugerem a ocorrência de arsenatos de cálcio (composição indefinida) e de coprecipitação Al(III)-As(V). O gesso (CaSO4.2H2O) é a fase predominante na massa bruta de resíduos, e sua solubilização controlada (via condutividade) com água resultou na redução de até 70% da massa total de resíduo, com um potencial de liberação de As de até 3,5%Astotal. Este montante corresponde a um teor máximo da ordem de 0,7 g.kg-1 de arsênio potencialmente móvel. Foi verificado um enriquecimento passivo de ferro nos resíduos mais antigos (14-21 anos) bem como um menor teor relativo de Ca, S e As em relação aos resíduos mais recentes (7-14 anos). Estes resultados sugerem processos de remobilização ocorridos ao longo do tempo, atribuídos como dissolução de uma fase Ca-arsenato (e.g. CaHAsO4.H2O) e parte do gesso originalmente formado. A atual maior quantidade relativa de ferro (Fe/As= 6,0 atual vs. 0,4 de processo) também sugere uma maior estabilidade em tempo futuro dos resíduos mais antigos, se comparados àqueles com idade entre 7 e 14 anos. Não foram observadas transformações estruturais em fases mais ordenadas, mesmo nos resíduos amorfos envelhecidos há cerca de 20 anos. A existência da associação Al(III)-As(V) nos coprecipitados de origem industrial motivou as investigações sobre a solubilidade do arsenato de alumínio amorfo a partir da síntese do material em laboratório. Em condição de dissolução congruente (pH = 2,7) identificou-se a fase AlAsO4.3,4H2O e determinou-se a constante de solubilidade (Ksp) igual a 10-17,9 ± 0,07 em 25°C. De forma a aprofundar o entendimento sobre os mecanismos de imobilização, coprecipitados amorfos Fe(III)-As(V) foram sintetizados em laboratório, em diferentes condições de pH (1,5, 4, 6 e 8) e de relações molares Fe/As (1:1, 2:1 e 4:1). A amostra precipitada em pH 1,5 (Fe/As=1:1) foi caracterizada como FeAsO4.1,8H2O. Nas amostras geradas nas demais condições, o As foi co-precipitado com ferrihidrita e, no caso do sistema contendo Fe/As=4:1, também com schwertmannita (pH 4, meio sulfato). A quantidade de arsênio especificamente adsorvido foi avaliada através de lixiviação seletiva com solução de fosfato. A quantidade de As adsorvido aumentou com o incremento do pH (de 6% Astotal, em pH 1,5, a 85% Astotal em pH 8), mas não foi afetada pelo aumento da relação molar Fe/As (de 1:1 para 4:1), permanecendo entre 20% e 25% Astotal. A análise dos produtos resultantes da decomposição térmica parcial dos materiais amorfos permitiu comprovar o aumento do teor relativo de ferrihidrita com o incremento do pH. Com o aumento da relação molar Fe/As (de 1:1 para 4:1), essa análise permitiu também inferir a presença de fases amorfas hidratadas contendo relação molar Fe/As=2 e 3, além da presença de FeAsO4.xH2O amorfo, ferrihidrita ou schwertmannita. Os resultados globais alcançados permitiram concluir que a menor ou a maior remoção de arsênio não pode ser relacionada com a predominância dos mecanismos de adsorção ou coprecipitação, mas sim com a natureza dos precipitados formados durante o processo de remoção. Por outro lado, o comportamento de longo prazo das amostras das valas comprova a participação de ambos os mecanismos, adsorção e coprecipitação, bem como o papel preponderante do ferro na imobilização do arsênio nos resíduos industriais.Universidade Federal de Minas GeraisUFMGVirginia Sampaio T CiminelliWander Luiz VasconcelosBernardino Ribeiro de FigueiredoClaudia Lima CaldeiraAna Claudia Queiroz LadeiraJaime Wilson Vargas de MelloFernando Luiz Pantuzzo2019-08-13T13:31:38Z2019-08-13T13:31:38Z2008-08-08info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttp://hdl.handle.net/1843/RAOA-BCTKCCinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2019-11-15T02:15:21Zoai:repositorio.ufmg.br:1843/RAOA-BCTKCCRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2019-11-15T02:15:21Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Fixação de arsênio em resíduos da mineração de ouro: mecanismo e aplicação
title Fixação de arsênio em resíduos da mineração de ouro: mecanismo e aplicação
spellingShingle Fixação de arsênio em resíduos da mineração de ouro: mecanismo e aplicação
Fernando Luiz Pantuzzo
Engenharia metalúrgica
Tecnologia mineral
Arsenio
Ouro Minas e mineração
Engenharia de minas
title_short Fixação de arsênio em resíduos da mineração de ouro: mecanismo e aplicação
title_full Fixação de arsênio em resíduos da mineração de ouro: mecanismo e aplicação
title_fullStr Fixação de arsênio em resíduos da mineração de ouro: mecanismo e aplicação
title_full_unstemmed Fixação de arsênio em resíduos da mineração de ouro: mecanismo e aplicação
title_sort Fixação de arsênio em resíduos da mineração de ouro: mecanismo e aplicação
author Fernando Luiz Pantuzzo
author_facet Fernando Luiz Pantuzzo
author_role author
dc.contributor.none.fl_str_mv Virginia Sampaio T Ciminelli
Wander Luiz Vasconcelos
Bernardino Ribeiro de Figueiredo
Claudia Lima Caldeira
Ana Claudia Queiroz Ladeira
Jaime Wilson Vargas de Mello
dc.contributor.author.fl_str_mv Fernando Luiz Pantuzzo
dc.subject.por.fl_str_mv Engenharia metalúrgica
Tecnologia mineral
Arsenio
Ouro Minas e mineração
Engenharia de minas
topic Engenharia metalúrgica
Tecnologia mineral
Arsenio
Ouro Minas e mineração
Engenharia de minas
description The aim of the present work was to investigate arsenic association, mineralogy and potential mobility from industrial residues and synthetic metallic arsenates. Samples of industrial residues collected in a gold extraction plant have been initially used. They were disposed during a period between one and two decades. Arsenic was shown to occur as As(V) species, predominantly in the form of amorphous iron arsenate (55 - 75 %Astotal) and sorbed onto amorphous iron oxi-hydroxides (20 - 37 %Astotal). Evidences of the presence of Ca-arsenate phases (indefinite composition) and Al-arsenate coprecipitation are provided. Gypsum (CaSO4.2H2O) was the predominant phase in the bulk residues, and its controlled leaching (via conductivity) with water resulted in a reduction of bulk mass as high as 70%, with potential arsenic release up to 3.5% Astotal. This amount corresponds to a maximum of 0.7g.kg-1 of potentially mobile arsenic. It was also observed a passive enrichment of iron in the oldest residues (14- 21 years), as well as a relative low concentration of Ca, S and As if compared to the more recent residues (7-14 years). These findings suggest that a process of remobilization, attributed to the dissolution of a Ca-arsenate phase (e.g. CaHAsO4.H2O) and a fraction of gypsum (formed during As precipitation from the process effluent process), took place along the two decades. The present enriched iron concentration (Fe/As= 6.0 currently vs. 0.4 in the effluent treatment) also suggest an increased arsenic stability for the oldest residues, if compared with the most recent ones (7 to 14 years old). Structural transformations of the amorphous co-precipitates into more ordered phases were not identified, even after 21 years of disposal. The Alarsenate association in the industrial coprecipitates motivated the investigation of solubility of an amorphous aluminum arsenate phase synthesized in laboratory. Under conditions of congruent dissolution (pH = 2.7), a Ksp value of 10-17.9 ± 0.07 at 25°C was determined for the compound with the chemical formula AlAsO4.3.4H2O. In order to better understand the mechanism of arsenic immobilization, Fe(III)-As(V) materials were also synthesized at different pH conditions (1.5, 4, 6 and 8) and Fe/As molar ratios (1:1, 2:1 and 4:1). The sample formed at pH 1.5 (Fe/As=1:1) was characterized as FeAsO4.1.8H2O. In the samples produced from Fe/As=4 solutions, arsenic was found to coprecipitate with ferryhydrite or schwertmannite, the latter in the presence of sulfate. The specifically sorbed arsenic was evaluated through selective leaching with phosphate solution. The sorbed arsenic increased with the pH increase (changing from 6% Astotal at pH 6 to 85% Astotal at pH 8) and was little affected by the increase of Fe/As molar ratio (from 1:1 to 4:1) staying between 20% and 25% Astotal. The analyses of the products formed during the partial thermal decomposition of the amorphous materials, allowed to infer the increase of amount of ferryhydrite with the increase of pH. The increase of the Fe/As molar ratio led to the presence of amorphous hydrated phases with Fe/As=2 and 3, in addition to the presence of amorphous FeAsO4.xH2O, ferrihydrite and schwertmannite (in sulfate media, pH4).The overall results allow us to conclude that the highest and lowest arsenic removal can not be correlated to the predominance of adsorption or precipitation mechanisms. It is rather correlated with the nature of the precipitate formed during the removal process. Furthermore, the longterm behavior of the slimes confirms the participation of mechanisms, adsorption and coprecipitation, as well as the prevailing role of iron in the immobilization of arsenic in mining sites.
publishDate 2008
dc.date.none.fl_str_mv 2008-08-08
2019-08-13T13:31:38Z
2019-08-13T13:31:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/1843/RAOA-BCTKCC
url http://hdl.handle.net/1843/RAOA-BCTKCC
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
UFMG
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1835272480225230848