REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE

Bibliographic Details
Main Author: SOUZA, Syntia Regina Rodrigues
Publication Date: 2018
Other Authors: SILVA, José Antônio Aleixo da, FERREIRA, Tiago Alessandro Espínola, GUERA, Ouorou Ganni Mariel
Format: Article
Language: por
Source: Brazilian Journal of Biometrics
Download full: https://biometria.ufla.br/index.php/BBJ/article/view/286
Summary: The objective of this study was to estimate the volume of Eucalyptus spp clones (genus of rapid growth) in  the Araripe Gypsum Pole, responsible for 97% of the national production of gypsum, employing the methodology of Artificial Neural Networks (ANNs) and comparing it with the volumetric models of schumacher and Hall and Spurr and also verify the efficiency of the estimation using different sample sizes and evaluate the contribution of a categorical variable in the estimation. Data came from an experiment implanted in the Experimental Station of the Agronomic Institute of Pernambuco, where was tested 15 clones of Eucalyptus spp planted in 2002, with final cut in 2009. It was also valued the adjustment of the best models for sample size. The goodness of fit of the models was evaluated based on: the adjusted coefficient of determination (R2aj), square root of the percent mean error (RMSE%), standard error estimate (Syx%) and an analysis graphic of the residues. The results obtained in the study showed that all modeling was adequate and it was observed that the efficiency of the adjustments depends not only on the sample size, but also on the variance, and that the addition of a categorical variable in the ANNs does not show any perceptible differences, necessary for volume estimation.e sample size.
id UFLA-8_8d974c7cc23ea90bc1b8efc31dbb7cad
oai_identifier_str oai:biometria.ufla.br:article/286
network_acronym_str UFLA-8
network_name_str Brazilian Journal of Biometrics
repository_id_str
spelling REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPEThe objective of this study was to estimate the volume of Eucalyptus spp clones (genus of rapid growth) in  the Araripe Gypsum Pole, responsible for 97% of the national production of gypsum, employing the methodology of Artificial Neural Networks (ANNs) and comparing it with the volumetric models of schumacher and Hall and Spurr and also verify the efficiency of the estimation using different sample sizes and evaluate the contribution of a categorical variable in the estimation. Data came from an experiment implanted in the Experimental Station of the Agronomic Institute of Pernambuco, where was tested 15 clones of Eucalyptus spp planted in 2002, with final cut in 2009. It was also valued the adjustment of the best models for sample size. The goodness of fit of the models was evaluated based on: the adjusted coefficient of determination (R2aj), square root of the percent mean error (RMSE%), standard error estimate (Syx%) and an analysis graphic of the residues. The results obtained in the study showed that all modeling was adequate and it was observed that the efficiency of the adjustments depends not only on the sample size, but also on the variance, and that the addition of a categorical variable in the ANNs does not show any perceptible differences, necessary for volume estimation.e sample size.Editora UFLA - Universidade Federal de Lavras - UFLA2018-09-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleinfo:eu-repo/semantics/otherapplication/pdfhttps://biometria.ufla.br/index.php/BBJ/article/view/28610.28951/rbb.v36i3.286Brazilian Journal of Biometrics; Vol. 36 No. 3 (2018); 715-729REVISTA BRASILEIRA DE BIOMETRIA; v. 36 n. 3 (2018); 715-7292764-529010.28951/rbb.v36i3reponame:Brazilian Journal of Biometricsinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://biometria.ufla.br/index.php/BBJ/article/view/286/198SOUZA, Syntia Regina RodriguesSILVA, José Antônio Aleixo daFERREIRA, Tiago Alessandro EspínolaGUERA, Ouorou Ganni Marielinfo:eu-repo/semantics/openAccess2021-07-13T03:04:20Zoai:biometria.ufla.br:article/286Revistahttps://biometria.ufla.br/index.php/BBJ/indexPUBhttps://biometria.ufla.br/index.php/BBJ/oaitales.jfernandes@ufla.br || scalon@ufla.br || biometria.des@ufla.br2764-52902764-5290opendoar:2021-07-13T03:04:20Brazilian Journal of Biometrics - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE
title REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE
spellingShingle REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE
SOUZA, Syntia Regina Rodrigues
title_short REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE
title_full REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE
title_fullStr REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE
title_full_unstemmed REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE
title_sort REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE
author SOUZA, Syntia Regina Rodrigues
author_facet SOUZA, Syntia Regina Rodrigues
SILVA, José Antônio Aleixo da
FERREIRA, Tiago Alessandro Espínola
GUERA, Ouorou Ganni Mariel
author_role author
author2 SILVA, José Antônio Aleixo da
FERREIRA, Tiago Alessandro Espínola
GUERA, Ouorou Ganni Mariel
author2_role author
author
author
dc.contributor.author.fl_str_mv SOUZA, Syntia Regina Rodrigues
SILVA, José Antônio Aleixo da
FERREIRA, Tiago Alessandro Espínola
GUERA, Ouorou Ganni Mariel
description The objective of this study was to estimate the volume of Eucalyptus spp clones (genus of rapid growth) in  the Araripe Gypsum Pole, responsible for 97% of the national production of gypsum, employing the methodology of Artificial Neural Networks (ANNs) and comparing it with the volumetric models of schumacher and Hall and Spurr and also verify the efficiency of the estimation using different sample sizes and evaluate the contribution of a categorical variable in the estimation. Data came from an experiment implanted in the Experimental Station of the Agronomic Institute of Pernambuco, where was tested 15 clones of Eucalyptus spp planted in 2002, with final cut in 2009. It was also valued the adjustment of the best models for sample size. The goodness of fit of the models was evaluated based on: the adjusted coefficient of determination (R2aj), square root of the percent mean error (RMSE%), standard error estimate (Syx%) and an analysis graphic of the residues. The results obtained in the study showed that all modeling was adequate and it was observed that the efficiency of the adjustments depends not only on the sample size, but also on the variance, and that the addition of a categorical variable in the ANNs does not show any perceptible differences, necessary for volume estimation.e sample size.
publishDate 2018
dc.date.none.fl_str_mv 2018-09-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Peer-reviewed Article
info:eu-repo/semantics/other
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://biometria.ufla.br/index.php/BBJ/article/view/286
10.28951/rbb.v36i3.286
url https://biometria.ufla.br/index.php/BBJ/article/view/286
identifier_str_mv 10.28951/rbb.v36i3.286
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv https://biometria.ufla.br/index.php/BBJ/article/view/286/198
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Editora UFLA - Universidade Federal de Lavras - UFLA
publisher.none.fl_str_mv Editora UFLA - Universidade Federal de Lavras - UFLA
dc.source.none.fl_str_mv Brazilian Journal of Biometrics; Vol. 36 No. 3 (2018); 715-729
REVISTA BRASILEIRA DE BIOMETRIA; v. 36 n. 3 (2018); 715-729
2764-5290
10.28951/rbb.v36i3
reponame:Brazilian Journal of Biometrics
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Brazilian Journal of Biometrics
collection Brazilian Journal of Biometrics
repository.name.fl_str_mv Brazilian Journal of Biometrics - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv tales.jfernandes@ufla.br || scalon@ufla.br || biometria.des@ufla.br
_version_ 1839722766177140736