REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE
Main Author: | |
---|---|
Publication Date: | 2018 |
Other Authors: | , , |
Format: | Article |
Language: | por |
Source: | Brazilian Journal of Biometrics |
Download full: | https://biometria.ufla.br/index.php/BBJ/article/view/286 |
Summary: | The objective of this study was to estimate the volume of Eucalyptus spp clones (genus of rapid growth) in the Araripe Gypsum Pole, responsible for 97% of the national production of gypsum, employing the methodology of Artificial Neural Networks (ANNs) and comparing it with the volumetric models of schumacher and Hall and Spurr and also verify the efficiency of the estimation using different sample sizes and evaluate the contribution of a categorical variable in the estimation. Data came from an experiment implanted in the Experimental Station of the Agronomic Institute of Pernambuco, where was tested 15 clones of Eucalyptus spp planted in 2002, with final cut in 2009. It was also valued the adjustment of the best models for sample size. The goodness of fit of the models was evaluated based on: the adjusted coefficient of determination (R2aj), square root of the percent mean error (RMSE%), standard error estimate (Syx%) and an analysis graphic of the residues. The results obtained in the study showed that all modeling was adequate and it was observed that the efficiency of the adjustments depends not only on the sample size, but also on the variance, and that the addition of a categorical variable in the ANNs does not show any perceptible differences, necessary for volume estimation.e sample size. |
id |
UFLA-8_8d974c7cc23ea90bc1b8efc31dbb7cad |
---|---|
oai_identifier_str |
oai:biometria.ufla.br:article/286 |
network_acronym_str |
UFLA-8 |
network_name_str |
Brazilian Journal of Biometrics |
repository_id_str |
|
spelling |
REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPEThe objective of this study was to estimate the volume of Eucalyptus spp clones (genus of rapid growth) in the Araripe Gypsum Pole, responsible for 97% of the national production of gypsum, employing the methodology of Artificial Neural Networks (ANNs) and comparing it with the volumetric models of schumacher and Hall and Spurr and also verify the efficiency of the estimation using different sample sizes and evaluate the contribution of a categorical variable in the estimation. Data came from an experiment implanted in the Experimental Station of the Agronomic Institute of Pernambuco, where was tested 15 clones of Eucalyptus spp planted in 2002, with final cut in 2009. It was also valued the adjustment of the best models for sample size. The goodness of fit of the models was evaluated based on: the adjusted coefficient of determination (R2aj), square root of the percent mean error (RMSE%), standard error estimate (Syx%) and an analysis graphic of the residues. The results obtained in the study showed that all modeling was adequate and it was observed that the efficiency of the adjustments depends not only on the sample size, but also on the variance, and that the addition of a categorical variable in the ANNs does not show any perceptible differences, necessary for volume estimation.e sample size.Editora UFLA - Universidade Federal de Lavras - UFLA2018-09-26info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionPeer-reviewed Articleinfo:eu-repo/semantics/otherapplication/pdfhttps://biometria.ufla.br/index.php/BBJ/article/view/28610.28951/rbb.v36i3.286Brazilian Journal of Biometrics; Vol. 36 No. 3 (2018); 715-729REVISTA BRASILEIRA DE BIOMETRIA; v. 36 n. 3 (2018); 715-7292764-529010.28951/rbb.v36i3reponame:Brazilian Journal of Biometricsinstname:Universidade Federal de Lavras (UFLA)instacron:UFLAporhttps://biometria.ufla.br/index.php/BBJ/article/view/286/198SOUZA, Syntia Regina RodriguesSILVA, José Antônio Aleixo daFERREIRA, Tiago Alessandro EspínolaGUERA, Ouorou Ganni Marielinfo:eu-repo/semantics/openAccess2021-07-13T03:04:20Zoai:biometria.ufla.br:article/286Revistahttps://biometria.ufla.br/index.php/BBJ/indexPUBhttps://biometria.ufla.br/index.php/BBJ/oaitales.jfernandes@ufla.br || scalon@ufla.br || biometria.des@ufla.br2764-52902764-5290opendoar:2021-07-13T03:04:20Brazilian Journal of Biometrics - Universidade Federal de Lavras (UFLA)false |
dc.title.none.fl_str_mv |
REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE |
title |
REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE |
spellingShingle |
REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE SOUZA, Syntia Regina Rodrigues |
title_short |
REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE |
title_full |
REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE |
title_fullStr |
REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE |
title_full_unstemmed |
REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE |
title_sort |
REDES NEURAIS PARA ESTIMATIVA VOLUMÉTRICA DE CLONES DE EUCALYPTUS SPP. NO PÓLO GESSEIRO DO ARARIPE |
author |
SOUZA, Syntia Regina Rodrigues |
author_facet |
SOUZA, Syntia Regina Rodrigues SILVA, José Antônio Aleixo da FERREIRA, Tiago Alessandro Espínola GUERA, Ouorou Ganni Mariel |
author_role |
author |
author2 |
SILVA, José Antônio Aleixo da FERREIRA, Tiago Alessandro Espínola GUERA, Ouorou Ganni Mariel |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
SOUZA, Syntia Regina Rodrigues SILVA, José Antônio Aleixo da FERREIRA, Tiago Alessandro Espínola GUERA, Ouorou Ganni Mariel |
description |
The objective of this study was to estimate the volume of Eucalyptus spp clones (genus of rapid growth) in the Araripe Gypsum Pole, responsible for 97% of the national production of gypsum, employing the methodology of Artificial Neural Networks (ANNs) and comparing it with the volumetric models of schumacher and Hall and Spurr and also verify the efficiency of the estimation using different sample sizes and evaluate the contribution of a categorical variable in the estimation. Data came from an experiment implanted in the Experimental Station of the Agronomic Institute of Pernambuco, where was tested 15 clones of Eucalyptus spp planted in 2002, with final cut in 2009. It was also valued the adjustment of the best models for sample size. The goodness of fit of the models was evaluated based on: the adjusted coefficient of determination (R2aj), square root of the percent mean error (RMSE%), standard error estimate (Syx%) and an analysis graphic of the residues. The results obtained in the study showed that all modeling was adequate and it was observed that the efficiency of the adjustments depends not only on the sample size, but also on the variance, and that the addition of a categorical variable in the ANNs does not show any perceptible differences, necessary for volume estimation.e sample size. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-09-26 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Peer-reviewed Article info:eu-repo/semantics/other |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://biometria.ufla.br/index.php/BBJ/article/view/286 10.28951/rbb.v36i3.286 |
url |
https://biometria.ufla.br/index.php/BBJ/article/view/286 |
identifier_str_mv |
10.28951/rbb.v36i3.286 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://biometria.ufla.br/index.php/BBJ/article/view/286/198 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora UFLA - Universidade Federal de Lavras - UFLA |
publisher.none.fl_str_mv |
Editora UFLA - Universidade Federal de Lavras - UFLA |
dc.source.none.fl_str_mv |
Brazilian Journal of Biometrics; Vol. 36 No. 3 (2018); 715-729 REVISTA BRASILEIRA DE BIOMETRIA; v. 36 n. 3 (2018); 715-729 2764-5290 10.28951/rbb.v36i3 reponame:Brazilian Journal of Biometrics instname:Universidade Federal de Lavras (UFLA) instacron:UFLA |
instname_str |
Universidade Federal de Lavras (UFLA) |
instacron_str |
UFLA |
institution |
UFLA |
reponame_str |
Brazilian Journal of Biometrics |
collection |
Brazilian Journal of Biometrics |
repository.name.fl_str_mv |
Brazilian Journal of Biometrics - Universidade Federal de Lavras (UFLA) |
repository.mail.fl_str_mv |
tales.jfernandes@ufla.br || scalon@ufla.br || biometria.des@ufla.br |
_version_ |
1839722766177140736 |