ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZIL

Detalhes bibliográficos
Autor(a) principal: de Abreu, Jadson Coelho
Data de Publicação: 2020
Outros Autores: Soares, Carlos Pedro Boechat, Leite, Helio Garcia, Binoti, Daniel Henrique Breda, Silva, Gilson Fernandes da
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Cerne (Online)
Texto Completo: https://cerne.ufla.br/site/index.php/CERNE/article/view/2413
Resumo: The  objective  of  this  study  was  to  compare  different  alternatives  to  estimate  the  stem  volume  of  individual  trees  in  four  different  forest  formations  in  the  Minas  Gerais  state,  Brazil. The data were obtained in a forest inventory procedure performed by the Minas Gerais  Technological  Center  Foundation.  The  stem  volumes  were  computed  by  the  Smalian expression up to the outside bark diameter equal to 4 cm. The volume data of outside bark, diameters (DBH) and total heights were used to fit a Schumacher and Hall equation for each forest formation, considering the structures of the linear fixed and mixed models. Next, 100 Multilayer Perceptron artificial neural networks (ANN) were trained in a supervised manner. In addition, we evaluated eight support-vector machine regression (SVMR). The criteria to evaluate the performance of all the alternatives studied were: the correlation between the observed and estimated volumes, the square root of the mean square error and the frequency distribution by percentage relative error class. After the analyzes, all the alternatives were verified to estimate the volume of the individual trees in the different forest formations. Although the alternatives presented close statistics in the  validation  process,  the  graphical  analysis  of  the  error  distribution  showed  greater  precision of the estimates of the mixed linear models for the four formations. Given the results,  it  is  concluded  that  there  is  no  absolute  superiority  of  one  alternative  over  the  others, and that all of them should be evaluated to find the one which best describes or explains the dataset.
id UFLA-3_0184ab5f90dd976577e64c06efa838af
oai_identifier_str oai:cerne.ufla.br:article/2413
network_acronym_str UFLA-3
network_name_str Cerne (Online)
repository_id_str
spelling ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZILALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZILArtificial neural networks; mixed linear model; regression; support-vector machine.The  objective  of  this  study  was  to  compare  different  alternatives  to  estimate  the  stem  volume  of  individual  trees  in  four  different  forest  formations  in  the  Minas  Gerais  state,  Brazil. The data were obtained in a forest inventory procedure performed by the Minas Gerais  Technological  Center  Foundation.  The  stem  volumes  were  computed  by  the  Smalian expression up to the outside bark diameter equal to 4 cm. The volume data of outside bark, diameters (DBH) and total heights were used to fit a Schumacher and Hall equation for each forest formation, considering the structures of the linear fixed and mixed models. Next, 100 Multilayer Perceptron artificial neural networks (ANN) were trained in a supervised manner. In addition, we evaluated eight support-vector machine regression (SVMR). The criteria to evaluate the performance of all the alternatives studied were: the correlation between the observed and estimated volumes, the square root of the mean square error and the frequency distribution by percentage relative error class. After the analyzes, all the alternatives were verified to estimate the volume of the individual trees in the different forest formations. Although the alternatives presented close statistics in the  validation  process,  the  graphical  analysis  of  the  error  distribution  showed  greater  precision of the estimates of the mixed linear models for the four formations. Given the results,  it  is  concluded  that  there  is  no  absolute  superiority  of  one  alternative  over  the  others, and that all of them should be evaluated to find the one which best describes or explains the dataset.The  objective  of  this  study  was  to  compare  different  alternatives  to  estimate  the  stem  volume  of  individual  trees  in  four  different  forest  formations  in  the  Minas  Gerais  state,  Brazil. The data were obtained in a forest inventory procedure performed by the Minas Gerais  Technological  Center  Foundation.  The  stem  volumes  were  computed  by  the  Smalian expression up to the outside bark diameter equal to 4 cm. The volume data of outside bark, diameters (DBH) and total heights were used to fit a Schumacher and Hall equation for each forest formation, considering the structures of the linear fixed and mixed models. Next, 100 Multilayer Perceptron artificial neural networks (ANN) were trained in a supervised manner. In addition, we evaluated eight support-vector machine regression (SVMR). The criteria to evaluate the performance of all the alternatives studied were: the correlation between the observed and estimated volumes, the square root of the mean square error and the frequency distribution by percentage relative error class. After the analyzes, all the alternatives were verified to estimate the volume of the individual trees in the different forest formations. Although the alternatives presented close statistics in the  validation  process,  the  graphical  analysis  of  the  error  distribution  showed  greater  precision of the estimates of the mixed linear models for the four formations. Given the results,  it  is  concluded  that  there  is  no  absolute  superiority  of  one  alternative  over  the  others, and that all of them should be evaluated to find the one which best describes or explains the dataset.CERNECERNE2020-11-17info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://cerne.ufla.br/site/index.php/CERNE/article/view/2413CERNE; Vol 26 No 3 (2020); 393-402CERNE; Vol 26 No 3 (2020); 393-4022317-63420104-7760reponame:Cerne (Online)instname:Universidade Federal de Lavras (UFLA)instacron:UFLAenghttps://cerne.ufla.br/site/index.php/CERNE/article/view/2413/1206Copyright (c) 2020 CERNEinfo:eu-repo/semantics/openAccessde Abreu, Jadson CoelhoSoares, Carlos Pedro BoechatLeite, Helio GarciaBinoti, Daniel Henrique BredaSilva, Gilson Fernandes da2021-01-12T03:47:17Zoai:cerne.ufla.br:article/2413Revistahttps://cerne.ufla.br/site/index.php/CERNEPUBhttps://cerne.ufla.br/site/index.php/CERNE/oaicerne@dcf.ufla.br||cerne@dcf.ufla.br2317-63420104-7760opendoar:2024-05-23T16:29:12.630092Cerne (Online) - Universidade Federal de Lavras (UFLA)false
dc.title.none.fl_str_mv ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZIL
ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZIL
title ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZIL
spellingShingle ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZIL
de Abreu, Jadson Coelho
Artificial neural networks; mixed linear model; regression; support-vector machine.
title_short ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZIL
title_full ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZIL
title_fullStr ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZIL
title_full_unstemmed ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZIL
title_sort ALTERNATIVES TO ESTIMATE THE VOLUME OF INDIVIDUAL TREES IN FOREST FORMATIONS IN THE STATE OF MINAS GERAIS, BRAZIL
author de Abreu, Jadson Coelho
author_facet de Abreu, Jadson Coelho
Soares, Carlos Pedro Boechat
Leite, Helio Garcia
Binoti, Daniel Henrique Breda
Silva, Gilson Fernandes da
author_role author
author2 Soares, Carlos Pedro Boechat
Leite, Helio Garcia
Binoti, Daniel Henrique Breda
Silva, Gilson Fernandes da
author2_role author
author
author
author
dc.contributor.author.fl_str_mv de Abreu, Jadson Coelho
Soares, Carlos Pedro Boechat
Leite, Helio Garcia
Binoti, Daniel Henrique Breda
Silva, Gilson Fernandes da
dc.subject.por.fl_str_mv Artificial neural networks; mixed linear model; regression; support-vector machine.
topic Artificial neural networks; mixed linear model; regression; support-vector machine.
description The  objective  of  this  study  was  to  compare  different  alternatives  to  estimate  the  stem  volume  of  individual  trees  in  four  different  forest  formations  in  the  Minas  Gerais  state,  Brazil. The data were obtained in a forest inventory procedure performed by the Minas Gerais  Technological  Center  Foundation.  The  stem  volumes  were  computed  by  the  Smalian expression up to the outside bark diameter equal to 4 cm. The volume data of outside bark, diameters (DBH) and total heights were used to fit a Schumacher and Hall equation for each forest formation, considering the structures of the linear fixed and mixed models. Next, 100 Multilayer Perceptron artificial neural networks (ANN) were trained in a supervised manner. In addition, we evaluated eight support-vector machine regression (SVMR). The criteria to evaluate the performance of all the alternatives studied were: the correlation between the observed and estimated volumes, the square root of the mean square error and the frequency distribution by percentage relative error class. After the analyzes, all the alternatives were verified to estimate the volume of the individual trees in the different forest formations. Although the alternatives presented close statistics in the  validation  process,  the  graphical  analysis  of  the  error  distribution  showed  greater  precision of the estimates of the mixed linear models for the four formations. Given the results,  it  is  concluded  that  there  is  no  absolute  superiority  of  one  alternative  over  the  others, and that all of them should be evaluated to find the one which best describes or explains the dataset.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-17
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/2413
url https://cerne.ufla.br/site/index.php/CERNE/article/view/2413
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://cerne.ufla.br/site/index.php/CERNE/article/view/2413/1206
dc.rights.driver.fl_str_mv Copyright (c) 2020 CERNE
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2020 CERNE
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv CERNE
CERNE
publisher.none.fl_str_mv CERNE
CERNE
dc.source.none.fl_str_mv CERNE; Vol 26 No 3 (2020); 393-402
CERNE; Vol 26 No 3 (2020); 393-402
2317-6342
0104-7760
reponame:Cerne (Online)
instname:Universidade Federal de Lavras (UFLA)
instacron:UFLA
instname_str Universidade Federal de Lavras (UFLA)
instacron_str UFLA
institution UFLA
reponame_str Cerne (Online)
collection Cerne (Online)
repository.name.fl_str_mv Cerne (Online) - Universidade Federal de Lavras (UFLA)
repository.mail.fl_str_mv cerne@dcf.ufla.br||cerne@dcf.ufla.br
_version_ 1825939738397245440