Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas

Bibliographic Details
Main Author: Bastos, Wellison Peixoto
Publication Date: 2011
Format: Master thesis
Language: por
Source: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000v5xh
Download full: http://repositorio.bc.ufg.br/tede/handle/tde/3027
Summary: Aproveitando as rotações de Faraday que ocorrem em um cristal fotônico colocado em uma cavidade óptica com baixo fator de qualidade, propusemos dois esquemas para obter a troca de emaranhamento de estados atômicos, útil em comunicação quântica e computação quântica. Eles empregam átomos de três níveis em uma configuração, uma fonte de fótons com polarização linear, um único detector, e uma placa de quarto de onda. Três (quatro) cavidades são usadas no primeiro (segundo) esquema. Um método adicional foi também proposto para obter teletransporte controlado de estados de superposição, teletransporte parcial controlado de estados emaranhados e teletransporte controlado de estados emaranhados. Em todos os esquemas incluímos as imperfeições que afetam o sistema, tais como a transmissão e acoplamento de fótons em componentes ópticos, a fração de fótons com uma polarização desejada, a eficiência quântica da detecção de um único fóton, o ângulo sólido efetivo em que o fótons são coletados e a taxa de fótons emitidos pela fonte. Sob estas condições realistas, estimamos a probabilidade de sucesso de cada processo, incluindo o tempo gasto para sua realização.
id UFG-2_b4d32b9dedd06aa5bf466592cc9942c3
oai_identifier_str oai:null:tde/3027
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str oai:repositorio.bc.ufg.br:tede/1234
spelling Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicasEntaglement swapping and controlled teleportation in the context of photonic Faraday rotationsrotações de Faradaycomunicação quânticafótons – TeletransporteFaraday rotationsquantum communicationphotons - teleportationFISICA::FISICA GERALAproveitando as rotações de Faraday que ocorrem em um cristal fotônico colocado em uma cavidade óptica com baixo fator de qualidade, propusemos dois esquemas para obter a troca de emaranhamento de estados atômicos, útil em comunicação quântica e computação quântica. Eles empregam átomos de três níveis em uma configuração, uma fonte de fótons com polarização linear, um único detector, e uma placa de quarto de onda. Três (quatro) cavidades são usadas no primeiro (segundo) esquema. Um método adicional foi também proposto para obter teletransporte controlado de estados de superposição, teletransporte parcial controlado de estados emaranhados e teletransporte controlado de estados emaranhados. Em todos os esquemas incluímos as imperfeições que afetam o sistema, tais como a transmissão e acoplamento de fótons em componentes ópticos, a fração de fótons com uma polarização desejada, a eficiência quântica da detecção de um único fóton, o ângulo sólido efetivo em que o fótons são coletados e a taxa de fótons emitidos pela fonte. Sob estas condições realistas, estimamos a probabilidade de sucesso de cada processo, incluindo o tempo gasto para sua realização.Taking advantage of the Faraday rotations that occur in a photonic cristal placed in an optical cavity with low quality factor, we proposed two schemes to obtain the swapping of entanglement of atomic states, useful in quantum communication and quantum computation. They employ three-level atoms in a -configuration, a linearly polarized photon source, a single detector, and a quarter wave plate. Three (four) cavities are used in the first (second) scheme. An additional scheme was also proposed to obtain controlled teleportation of superposition states, partial controlled teleportation of entangled states and controlled teleportation of entanglement. In all schemes we have included the imperfections that affect the system, such as transmission and coupling of photons in optical components, the fraction of photons with a desired polarization, the quantum efficiency of single photon detection, the effective solid angle where the photon are collected, and the rate of emitted photons by the source. Under these realistic conditions we estimate the success probability of each proccess, including the time spent for its realization.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESUniversidade Federal de GoiásInstituto de Física - IF (RG)BrasilUFGPrograma de Pós-graduação em Fisica (IF)Baseia, Basiliohttp://lattes.cnpq.br/5804506385505435Cardoso, Wesley BuenoBaseia, BasilioCardoso, Wesley BuenoMizrahi, Salomon SylvainFonseca, Tertius Lima daBastos, Wellison Peixoto2014-09-05T19:52:53Z2014-09-052011-03-04info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfBastos, Wellison Peixoto - Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas - 2011 - 82 f.- Dissertação - Programa de Pós-graduação em Fisica (IF) - Universidade Federal de Goiás - Goiânia - Goiás - Brasil.http://repositorio.bc.ufg.br/tede/handle/tde/3027ark:/38995/001300000v5xhpor[1] J. M. Raimond, M. Brune, S. Haroche, Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 53, 565 (2001). [2] A. Einstein, B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777 (1935). [3] N. Bohr, Can Quantum-Mechanical Description of Physical Reality be Considered Complete?, Phys. Rev. 48, 696 (1935). [4] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics (Long Island City, N.Y.) 1, 195 (1964). [5] A. Zeilinger, Experiment and the foundations of quantum physics, Rev. Mod. Phys. 71, S288 (1998). [6] A. Aspect, Bell’s inequality test: more ideal than ever, Nature (London) 398, 189 (1999). [7] D. M. Greenberger, M. Horne, A. Zeilinger, Going beyond Bell’s theorem, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, The Netherlands, 1989), pg. a 73-76. [8] A. Ekert, Quantum Cryptography Based on Bell’s Theorem, Phys. Rev. Lett. 67, 661 (1991). [9] C. H. Bennett, G. Brassard, C. Cr´epeau, R. Jozsa, A. Peres,W. K.Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky- Rosen channels, Phys. Rev. Lett. 70, 1895 (1993). [10] P. W. Shor, in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society) (1994). [11] A. Ekert, R. Josza, Quantum computation and Shor’s factoring algorithm, Rev. Mod. Phys. 68, 733 (1996). [12] L. K. Grover, Quantum Mechanics Helps in Searching for a Needle in a Haystack, Phys. Rev. Lett. 79, 325 (1997). [13] Y. H. Shih, C. O. Alley, New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of light Quanta Produced by Optical Parametric Down Conversion, Phys. Rev. Lett, 61, 26 (1988). [14] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation, Nature 390, 575 (1997). [15] D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev. Lett. 80, 1121 (1998). [16] A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, E. S. Polzik,Unconditional Quantum Teleportation, Science 282, 706 (1998). [17] Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C.Monroe, D. J.Wineland, Deterministic Entanglement of Two Trapped Ions, Phys. Rev. Lett. 81, 3631 (1998). [18] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, D. J. Wineland, Demonstration of a Fundamental Quantum Logic Gate, Phys. Rev. Lett. 75, 4714 (1995). [19] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette,W.M. Itano, D. J.Wienland, C.Monroe, Experimental entanglement of four particles, Nature 404, 256 (2000). [20] R. J. Thompson, G. Rempe, H. J. Kimble, Observation of Normal-Mode Splitting for an Atom in a Optical Cavity, Phys. Rev. Lett. 68, 1132 (1992). [21] P. M¨unstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, G. Rempe, Dynamics of Single-Atom Motion Observed in a High-Finesse Cavity, Phys. Rev. Lett. 82, 3791 (1999). [22] C. J. Hood, T.W. Lynn, A. C. Doherty, A. S. Parkins, H. J. Kimble, The Atom- Cavity Microscope: Single Atoms Bound in Orbit by Single Photons, Science 287, 1447 (2000). [23] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble, Theory of Photon Blockade by an Optical Cavity with One Trapped Atom, Nature 436, 87 (2005). [24] T.Wilk, S. C.Webster, A. Kuhn, G. Rempe, Single-Atom Single-Photon Quantum Interface, Science 317, 488 (2007). [25] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, S. Haroche, Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED, Phys. Rev. Lett. 83, 5166 (1999). [26] M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Continous generation of single photons with controlled waveform in an ion-trap cavity system, Nature 431, 1075 (2004). [27] M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, A Single-Photon Server with Just One Atom, Nat. Phys. 3, 253 (2007). [28] J.-H. An, M. Feng, C. H. Oh, Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities, Phys. Rev. A 79, 032303 (2009). [29] J.-J. Chen, J.-H. An, M. Feng, G. Liu, Teleportation of an arbitrary multipartite state via photonic Faraday rotation, J. Phys. B: At. Mol. Opt. Phys. 43, 095505 (2010). [30] B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, H. J. Kimble, A Photon Turnstile Dynamically Regulated by One Atom , Science 319, 1062 (2008). [31] H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, N. Gisin, Long-distance entanglement swapping with photons from separated sources, Phys. Rev. A 71, 050302 (2005). [32] S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, C. Monroe, Quantum Teleportation Between Distant Matter Qubits, Science 323, 486 (2009). [33] W. Tittel, H. Zbinden, N. Gisin, Experimental demonstration of quantum secret sharing, Phys. Rev. A 63, 042301 (2001). [34] C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. ˙ Zukowski, H. Weinfurter Experimental Single Qubit Quantum Secret Sharing, Phys. Rev. Lett. 95, 230505 (2005). [35] W. P. Bastos, W. B. Cardoso, A. T. Avelar, B. Baseia, Entanglement swapping of atomic states through the photonic Faraday rotation, arXiv:1005.1189v1 2010. (Aceito no Quant. Inf. Process.) [36] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432, 200 (2004). [37] A. Blais, R. S. Huang, A.Wallraff, S. Girvin, R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69, 062320 (2004). [38] S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University Press, New York, 2006). [39] L.-M. Duan, H. J. Kimble, Scalable Photonic Quantum Computation through Cavity-Assisted Interactions, Phys. Rev. Lett. 92, 127902 (2004). [40] X.-M. Lin, Z.-W. Zhou, M.-Y. Ye, Y.-F. Xiao, G.-C. Guo, One-step implementation of a multiqubit controlled-phase-flip gate, Phys. Rev. A 73, 012323 (2006). [41] H. Goto, K. Ichimura, Quantum trajectory simulation of controlled phase-flip gates using the vacuum Rabi splitting, Phys. Rev. A 72, 054301 (2005). [42] Q. Chen, M. Chen, Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process, Phys. Rev. A 79, 064304 (2009). [43] C. J. Pethick, H. Smith, Bose?Einstein Condensation in Dilute Gases (Cambridge University Press, 2002). [44] D. F. Walls, G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994). [45] S. S.Mizrahi, V. V. Dodonov, Creating quanta with an ’annihilation’ operator, J. Phys. A: Math. Gen. 35 (2002) 8847. [46] H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer-Verlag, Berlin, 2008). [47] E. Courtens, Giant Faraday Rotations in self-induced transparency, Phys. Rev. Lett. 21, 3 (1968). [48] G. Labeyrie, C. Miniatura, R. Kaiser, Large Faraday rotation of resonant light in a cold atomic cloud, Phys. Rev. A 64, 033402 (2001). [49] B. Julsgaard, A. Kozhekin, E. S. Polzik, Experimental long-lived entanglement of two macroscopic objects, Nature 413, 400 (2001). [50] M. ˙ Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, Event-ready-detectors Bell experiment via entanglement swapping, Phys. Rev. Lett. 71, 4287 (1993). [51] S. J. Freedman, J. F. Clauser, Experimental Test of Local Hidden-Variable Theories, Phys. Rev. Lett. 28, 938 (1972). [52] J. G. Rarity, P. R. Tapster, Experimental violation of Bell’s inequality based on phase and momentum, Phys. Rev. Lett. 64, 2495 (1990). [53] E. Hagley, X.Maˆıtre, G. Nogues, C.Wunderlich, M. Brune, J.M. Raimond, S. Haroche, Generation of Einstein-Podolsky-Rosen Pairs of Atoms, Phys. Rev. Lett. 79, 1 (1997). [54] T. Jennewein, G. Weihs, J. W. Pan, A. Zeilinger. Experimental nonlocality proof of quantum teleportation and entanglement swapping, Phys. Rev. Lett. 88, 017903 (2002). [55] N. Boulant, K. Edmonds, J. Yang, M. A. Pravia, D. G. Cory, Experimental demonstration of an entanglement swapping operation and improved control in NMR quantum-information processing, Phys. Rev. A 68, 032305 (2003). [56] X.-J. Jia, X.-L. Su, Q. Pan, J.-R. Gao, C.-D. Xie, K.-C. Peng, Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables, Phys. Rev. Lett. 93, 250503 (2004). [57] D. Gottesman, I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations., Nature 402, 390 (1999). [58] J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network., Phys. Rev. Lett. 78, 3221 (1997). [59] L. Vaidman, Teleportation of quantum states, Phys. Rev. A 49, 2 (1994). [60] L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, S. Haroche, Teleportation of an atomic state between two cavities using nonlocal microwave fields, Phys. Rev. A 50, R895 (1994). [61] J. I. Cirac, A. S. Parkins, Schemes for atomic-state teleportation, Phys. Rev. A 50, R4441 (1994). [62] S. L. Braunstein, A. Mann, Measurement of the Bell operator and quantum teleportation, Phys. Rev. A 51, R1727 (1995). [63] M. H. Y.Moussa, Teleportation of a cavity-radiation-field state: An alternative scheme, Phys. Rev. A 54, 4661 (1996). [64] M. H. Y. Moussa, Teleportation with identity interchange of quantum states, Phys. Rev. A 55, R3287 (1997). [65] S.-B. Zheng, Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement, Phys. Rev. A 69, 064302 (2004). [66] W. B. Cardoso, A. T. Avelar, B. Baseia, N. G. de Almeida, Teleportation of entangled states without Bell-state measurement, Phys. Rev. A 72, 045802 (2005). [67] M. Riebe, H. Haffner, C. F. Roos,W. Hansel, J. Benhelm, G. P. T. Lancaster, T. W. Korber, C. Becher, F. Schmidt-Kaler, D. F. V. James, R. Blatt, Deterministic quantum teleportation with atoms, Nature 429, 734 (2004). [68] M. A. Nielsen, E. Knill, R. Laflamme, Complete quantum teleportation by nuclear magnetic resonance, Nature 396, 52 (1998). [69] A. Karlsson, M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58, 4394 (1998). [70] M. Hillery, V. Buzek, A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59, 1829 (1999). [71] C.-P. Yang, S.-I. Chu, S. Han, Efficient many-party controlled teleportation of multiqubit quantum information via entanglement , Phys. Rev. A 70, 022329 (2004). [72] W. B. Cardoso, N. G. de Almeida, Controlled partial teleportation of entangled states, Phys. Scr. 80, 045001 (2009); W. B. Cardoso, N. G. de Almeida, Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity, Chin. Phys. Lett. 25, 2488 (2008). [73] S. Gaertner, C. Kurtsiefer, M. Bourennane, H. Weinfurter, Experimental Demonstration of Four-Party Quantum Secret Sharing, Phys. Rev. A 98, 20503 (2007).http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFG2014-09-06T06:01:32Zoai:null:tde/3027Repositório InstitucionalPUBhttps://repositorio.bc.ufg.br/tedeserver/oai/requestgrt.bc@ufg.bropendoar:oai:repositorio.bc.ufg.br:tede/12342014-09-06T06:01:32Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)false
dc.title.none.fl_str_mv Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas
Entaglement swapping and controlled teleportation in the context of photonic Faraday rotations
title Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas
spellingShingle Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas
Bastos, Wellison Peixoto
rotações de Faraday
comunicação quântica
fótons – Teletransporte
Faraday rotations
quantum communication
photons - teleportation
FISICA::FISICA GERAL
title_short Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas
title_full Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas
title_fullStr Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas
title_full_unstemmed Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas
title_sort Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas
author Bastos, Wellison Peixoto
author_facet Bastos, Wellison Peixoto
author_role author
dc.contributor.none.fl_str_mv Baseia, Basilio
http://lattes.cnpq.br/5804506385505435
Cardoso, Wesley Bueno
Baseia, Basilio
Cardoso, Wesley Bueno
Mizrahi, Salomon Sylvain
Fonseca, Tertius Lima da
dc.contributor.author.fl_str_mv Bastos, Wellison Peixoto
dc.subject.por.fl_str_mv rotações de Faraday
comunicação quântica
fótons – Teletransporte
Faraday rotations
quantum communication
photons - teleportation
FISICA::FISICA GERAL
topic rotações de Faraday
comunicação quântica
fótons – Teletransporte
Faraday rotations
quantum communication
photons - teleportation
FISICA::FISICA GERAL
description Aproveitando as rotações de Faraday que ocorrem em um cristal fotônico colocado em uma cavidade óptica com baixo fator de qualidade, propusemos dois esquemas para obter a troca de emaranhamento de estados atômicos, útil em comunicação quântica e computação quântica. Eles empregam átomos de três níveis em uma configuração, uma fonte de fótons com polarização linear, um único detector, e uma placa de quarto de onda. Três (quatro) cavidades são usadas no primeiro (segundo) esquema. Um método adicional foi também proposto para obter teletransporte controlado de estados de superposição, teletransporte parcial controlado de estados emaranhados e teletransporte controlado de estados emaranhados. Em todos os esquemas incluímos as imperfeições que afetam o sistema, tais como a transmissão e acoplamento de fótons em componentes ópticos, a fração de fótons com uma polarização desejada, a eficiência quântica da detecção de um único fóton, o ângulo sólido efetivo em que o fótons são coletados e a taxa de fótons emitidos pela fonte. Sob estas condições realistas, estimamos a probabilidade de sucesso de cada processo, incluindo o tempo gasto para sua realização.
publishDate 2011
dc.date.none.fl_str_mv 2011-03-04
2014-09-05T19:52:53Z
2014-09-05
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Bastos, Wellison Peixoto - Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas - 2011 - 82 f.- Dissertação - Programa de Pós-graduação em Fisica (IF) - Universidade Federal de Goiás - Goiânia - Goiás - Brasil.
http://repositorio.bc.ufg.br/tede/handle/tde/3027
dc.identifier.dark.fl_str_mv ark:/38995/001300000v5xh
identifier_str_mv Bastos, Wellison Peixoto - Troca de Emaranhamento e Teletransporte Controlado no contexto de rotações de Faraday fotônicas - 2011 - 82 f.- Dissertação - Programa de Pós-graduação em Fisica (IF) - Universidade Federal de Goiás - Goiânia - Goiás - Brasil.
ark:/38995/001300000v5xh
url http://repositorio.bc.ufg.br/tede/handle/tde/3027
dc.language.iso.fl_str_mv por
language por
dc.relation.none.fl_str_mv [1] J. M. Raimond, M. Brune, S. Haroche, Colloquium: Manipulating quantum entanglement with atoms and photons in a cavity, Rev. Mod. Phys. 53, 565 (2001). [2] A. Einstein, B. Podolsky, N. Rosen, Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev. 47, 777 (1935). [3] N. Bohr, Can Quantum-Mechanical Description of Physical Reality be Considered Complete?, Phys. Rev. 48, 696 (1935). [4] J. S. Bell, On the Einstein-Podolsky-Rosen paradox, Physics (Long Island City, N.Y.) 1, 195 (1964). [5] A. Zeilinger, Experiment and the foundations of quantum physics, Rev. Mod. Phys. 71, S288 (1998). [6] A. Aspect, Bell’s inequality test: more ideal than ever, Nature (London) 398, 189 (1999). [7] D. M. Greenberger, M. Horne, A. Zeilinger, Going beyond Bell’s theorem, in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kafatos (Kluwer Academic, Dordrecht, The Netherlands, 1989), pg. a 73-76. [8] A. Ekert, Quantum Cryptography Based on Bell’s Theorem, Phys. Rev. Lett. 67, 661 (1991). [9] C. H. Bennett, G. Brassard, C. Cr´epeau, R. Jozsa, A. Peres,W. K.Wootters, Teleporting an unknown quantum state via dual classical and Einstein-Podolsky- Rosen channels, Phys. Rev. Lett. 70, 1895 (1993). [10] P. W. Shor, in Proceedings of the 35th Annual Symposium on the Foundations of Computer Science, edited by S. Goldwasser (IEEE Computer Society) (1994). [11] A. Ekert, R. Josza, Quantum computation and Shor’s factoring algorithm, Rev. Mod. Phys. 68, 733 (1996). [12] L. K. Grover, Quantum Mechanics Helps in Searching for a Needle in a Haystack, Phys. Rev. Lett. 79, 325 (1997). [13] Y. H. Shih, C. O. Alley, New Type of Einstein-Podolsky-Rosen-Bohm Experiment Using Pairs of light Quanta Produced by Optical Parametric Down Conversion, Phys. Rev. Lett, 61, 26 (1988). [14] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation, Nature 390, 575 (1997). [15] D. Boschi, S. Branca, F. De Martini, L. Hardy, S. Popescu, Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels, Phys. Rev. Lett. 80, 1121 (1998). [16] A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, E. S. Polzik,Unconditional Quantum Teleportation, Science 282, 706 (1998). [17] Q. A. Turchette, C. S. Wood, B. E. King, C. J. Myatt, D. Leibfried, W. M. Itano, C.Monroe, D. J.Wineland, Deterministic Entanglement of Two Trapped Ions, Phys. Rev. Lett. 81, 3631 (1998). [18] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, D. J. Wineland, Demonstration of a Fundamental Quantum Logic Gate, Phys. Rev. Lett. 75, 4714 (1995). [19] C. A. Sackett, D. Kielpinski, B. E. King, C. Langer, V. Meyer, C. J. Myatt, M. Rowe, Q. A. Turchette,W.M. Itano, D. J.Wienland, C.Monroe, Experimental entanglement of four particles, Nature 404, 256 (2000). [20] R. J. Thompson, G. Rempe, H. J. Kimble, Observation of Normal-Mode Splitting for an Atom in a Optical Cavity, Phys. Rev. Lett. 68, 1132 (1992). [21] P. M¨unstermann, T. Fischer, P. Maunz, P. W. H. Pinkse, G. Rempe, Dynamics of Single-Atom Motion Observed in a High-Finesse Cavity, Phys. Rev. Lett. 82, 3791 (1999). [22] C. J. Hood, T.W. Lynn, A. C. Doherty, A. S. Parkins, H. J. Kimble, The Atom- Cavity Microscope: Single Atoms Bound in Orbit by Single Photons, Science 287, 1447 (2000). [23] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, H. J. Kimble, Theory of Photon Blockade by an Optical Cavity with One Trapped Atom, Nature 436, 87 (2005). [24] T.Wilk, S. C.Webster, A. Kuhn, G. Rempe, Single-Atom Single-Photon Quantum Interface, Science 317, 488 (2007). [25] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, S. Haroche, Coherent Operation of a Tunable Quantum Phase Gate in Cavity QED, Phys. Rev. Lett. 83, 5166 (1999). [26] M. Keller, B. Lange, K. Hayasaka, W. Lange, H. Walther, Continous generation of single photons with controlled waveform in an ion-trap cavity system, Nature 431, 1075 (2004). [27] M. Hijlkema, B. Weber, H. P. Specht, S. C. Webster, A. Kuhn, G. Rempe, A Single-Photon Server with Just One Atom, Nat. Phys. 3, 253 (2007). [28] J.-H. An, M. Feng, C. H. Oh, Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities, Phys. Rev. A 79, 032303 (2009). [29] J.-J. Chen, J.-H. An, M. Feng, G. Liu, Teleportation of an arbitrary multipartite state via photonic Faraday rotation, J. Phys. B: At. Mol. Opt. Phys. 43, 095505 (2010). [30] B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. I. Vahala, H. J. Kimble, A Photon Turnstile Dynamically Regulated by One Atom , Science 319, 1062 (2008). [31] H. de Riedmatten, I. Marcikic, J. A. W. van Houwelingen, W. Tittel, H. Zbinden, N. Gisin, Long-distance entanglement swapping with photons from separated sources, Phys. Rev. A 71, 050302 (2005). [32] S. Olmschenk, D. N. Matsukevich, P. Maunz, D. Hayes, L.-M. Duan, C. Monroe, Quantum Teleportation Between Distant Matter Qubits, Science 323, 486 (2009). [33] W. Tittel, H. Zbinden, N. Gisin, Experimental demonstration of quantum secret sharing, Phys. Rev. A 63, 042301 (2001). [34] C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. ˙ Zukowski, H. Weinfurter Experimental Single Qubit Quantum Secret Sharing, Phys. Rev. Lett. 95, 230505 (2005). [35] W. P. Bastos, W. B. Cardoso, A. T. Avelar, B. Baseia, Entanglement swapping of atomic states through the photonic Faraday rotation, arXiv:1005.1189v1 2010. (Aceito no Quant. Inf. Process.) [36] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, D. G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity, Nature 432, 200 (2004). [37] A. Blais, R. S. Huang, A.Wallraff, S. Girvin, R. J. Schoelkopf, Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation, Phys. Rev. A 69, 062320 (2004). [38] S. Haroche, J.-M. Raimond, Exploring the Quantum: Atoms, Cavities and Photons (Oxford University Press, New York, 2006). [39] L.-M. Duan, H. J. Kimble, Scalable Photonic Quantum Computation through Cavity-Assisted Interactions, Phys. Rev. Lett. 92, 127902 (2004). [40] X.-M. Lin, Z.-W. Zhou, M.-Y. Ye, Y.-F. Xiao, G.-C. Guo, One-step implementation of a multiqubit controlled-phase-flip gate, Phys. Rev. A 73, 012323 (2006). [41] H. Goto, K. Ichimura, Quantum trajectory simulation of controlled phase-flip gates using the vacuum Rabi splitting, Phys. Rev. A 72, 054301 (2005). [42] Q. Chen, M. Chen, Quantum gating on neutral atoms in low-Q cavities by a single-photon input-output process, Phys. Rev. A 79, 064304 (2009). [43] C. J. Pethick, H. Smith, Bose?Einstein Condensation in Dilute Gases (Cambridge University Press, 2002). [44] D. F. Walls, G. J. Milburn, Quantum Optics (Springer-Verlag, Berlin, 1994). [45] S. S.Mizrahi, V. V. Dodonov, Creating quanta with an ’annihilation’ operator, J. Phys. A: Math. Gen. 35 (2002) 8847. [46] H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-Classical Fields (Springer-Verlag, Berlin, 2008). [47] E. Courtens, Giant Faraday Rotations in self-induced transparency, Phys. Rev. Lett. 21, 3 (1968). [48] G. Labeyrie, C. Miniatura, R. Kaiser, Large Faraday rotation of resonant light in a cold atomic cloud, Phys. Rev. A 64, 033402 (2001). [49] B. Julsgaard, A. Kozhekin, E. S. Polzik, Experimental long-lived entanglement of two macroscopic objects, Nature 413, 400 (2001). [50] M. ˙ Zukowski, A. Zeilinger, M. A. Horne, A. K. Ekert, Event-ready-detectors Bell experiment via entanglement swapping, Phys. Rev. Lett. 71, 4287 (1993). [51] S. J. Freedman, J. F. Clauser, Experimental Test of Local Hidden-Variable Theories, Phys. Rev. Lett. 28, 938 (1972). [52] J. G. Rarity, P. R. Tapster, Experimental violation of Bell’s inequality based on phase and momentum, Phys. Rev. Lett. 64, 2495 (1990). [53] E. Hagley, X.Maˆıtre, G. Nogues, C.Wunderlich, M. Brune, J.M. Raimond, S. Haroche, Generation of Einstein-Podolsky-Rosen Pairs of Atoms, Phys. Rev. Lett. 79, 1 (1997). [54] T. Jennewein, G. Weihs, J. W. Pan, A. Zeilinger. Experimental nonlocality proof of quantum teleportation and entanglement swapping, Phys. Rev. Lett. 88, 017903 (2002). [55] N. Boulant, K. Edmonds, J. Yang, M. A. Pravia, D. G. Cory, Experimental demonstration of an entanglement swapping operation and improved control in NMR quantum-information processing, Phys. Rev. A 68, 032305 (2003). [56] X.-J. Jia, X.-L. Su, Q. Pan, J.-R. Gao, C.-D. Xie, K.-C. Peng, Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables, Phys. Rev. Lett. 93, 250503 (2004). [57] D. Gottesman, I. L. Chuang, Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations., Nature 402, 390 (1999). [58] J. I. Cirac, P. Zoller, H. J. Kimble, H. Mabuchi, Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network., Phys. Rev. Lett. 78, 3221 (1997). [59] L. Vaidman, Teleportation of quantum states, Phys. Rev. A 49, 2 (1994). [60] L. Davidovich, N. Zagury, M. Brune, J. M. Raimond, S. Haroche, Teleportation of an atomic state between two cavities using nonlocal microwave fields, Phys. Rev. A 50, R895 (1994). [61] J. I. Cirac, A. S. Parkins, Schemes for atomic-state teleportation, Phys. Rev. A 50, R4441 (1994). [62] S. L. Braunstein, A. Mann, Measurement of the Bell operator and quantum teleportation, Phys. Rev. A 51, R1727 (1995). [63] M. H. Y.Moussa, Teleportation of a cavity-radiation-field state: An alternative scheme, Phys. Rev. A 54, 4661 (1996). [64] M. H. Y. Moussa, Teleportation with identity interchange of quantum states, Phys. Rev. A 55, R3287 (1997). [65] S.-B. Zheng, Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement, Phys. Rev. A 69, 064302 (2004). [66] W. B. Cardoso, A. T. Avelar, B. Baseia, N. G. de Almeida, Teleportation of entangled states without Bell-state measurement, Phys. Rev. A 72, 045802 (2005). [67] M. Riebe, H. Haffner, C. F. Roos,W. Hansel, J. Benhelm, G. P. T. Lancaster, T. W. Korber, C. Becher, F. Schmidt-Kaler, D. F. V. James, R. Blatt, Deterministic quantum teleportation with atoms, Nature 429, 734 (2004). [68] M. A. Nielsen, E. Knill, R. Laflamme, Complete quantum teleportation by nuclear magnetic resonance, Nature 396, 52 (1998). [69] A. Karlsson, M. Bourennane, Quantum teleportation using three-particle entanglement, Phys. Rev. A 58, 4394 (1998). [70] M. Hillery, V. Buzek, A. Berthiaume, Quantum secret sharing, Phys. Rev. A 59, 1829 (1999). [71] C.-P. Yang, S.-I. Chu, S. Han, Efficient many-party controlled teleportation of multiqubit quantum information via entanglement , Phys. Rev. A 70, 022329 (2004). [72] W. B. Cardoso, N. G. de Almeida, Controlled partial teleportation of entangled states, Phys. Scr. 80, 045001 (2009); W. B. Cardoso, N. G. de Almeida, Teleportation of Entangled States through Divorce of Entangled Pair Mediated by a Weak Coherent Field in a High-Q Cavity, Chin. Phys. Lett. 25, 2488 (2008). [73] S. Gaertner, C. Kurtsiefer, M. Bourennane, H. Weinfurter, Experimental Demonstration of Four-Party Quantum Secret Sharing, Phys. Rev. A 98, 20503 (2007).
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
Instituto de Física - IF (RG)
Brasil
UFG
Programa de Pós-graduação em Fisica (IF)
publisher.none.fl_str_mv Universidade Federal de Goiás
Instituto de Física - IF (RG)
Brasil
UFG
Programa de Pós-graduação em Fisica (IF)
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv grt.bc@ufg.br
_version_ 1837198266879442944