Novel procedures for graph edge-colouring

Bibliographic Details
Main Author: Zatesko, Leandro Miranda
Publication Date: 2018
Format: Doctoral thesis
Language: eng
Source: Repositório Institucional da UFFS (Repositório Digital da UFFS)
Download full: https://rd.uffs.edu.br/handle/prefix/2550
Summary: The chromatic index of a graph G is the minimum number of colours needed to colour the edges of G in a manner that no two adjacent edges receive the same colour. By the celebrated Vizing’s Theorem, the chromatic index of any simple graph G is either its maximum degree ∆ or it is ∆+1, in which case G is said to be Class 1 or Class 2, respectively. Computing an optimal edge-colouring of a graph or simply determining its chromatic index are importantNP-hard problems which appear in noteworthy applications, like sensor networks, optical networks, production control, and games. In this work we present novel polynomial-time procedures for optimally edge-colouring graphs belonging to some large sets of graphs. For example, let X be the class of the graphs whose majors (vertices of degree ∆) have local degree sum at most ∆2−∆ (by ‘local degree sum’ of a vertex x we mean the sum of the degrees of the neighbours of x). We show that almost every graph is in X and, by extending the recolouring procedure used by Vizing’s in the proof for his theorem, we show that every graph in X is Class 1. We further achieve results in other graph classes, such as join graphs, circular-arc graphs, and complementary prisms. For instance, we show that a complementary prism can be Class 2 only if it is a regular graph distinct from the K2. Concerning join graphs, we show that if G1 and G2 are disjoint graphs such that |V(G1)|6|V(G2)|and ∆(G1) > ∆(G2), and if the majors of G1 induce an acyclic graph, thenthejoingraphG1∗G2 isClass1. Besidestheseresultsonedge-colouring,we present partial results on total colouring joingraphs,cobipartitegraphs,andcircular-arcgraphs, as well as a discussion on a recolouring procedure for total colouring.
id UFFS_2f37ecee6722a310f812851df38975a7
oai_identifier_str oai:rd.uffs.edu.br:prefix/2550
network_acronym_str UFFS
network_name_str Repositório Institucional da UFFS (Repositório Digital da UFFS)
repository_id_str 3924
spelling Novel procedures for graph edge-colouringTeoria dos grafosAlgoritmos e estrutura de dadosThe chromatic index of a graph G is the minimum number of colours needed to colour the edges of G in a manner that no two adjacent edges receive the same colour. By the celebrated Vizing’s Theorem, the chromatic index of any simple graph G is either its maximum degree ∆ or it is ∆+1, in which case G is said to be Class 1 or Class 2, respectively. Computing an optimal edge-colouring of a graph or simply determining its chromatic index are importantNP-hard problems which appear in noteworthy applications, like sensor networks, optical networks, production control, and games. In this work we present novel polynomial-time procedures for optimally edge-colouring graphs belonging to some large sets of graphs. For example, let X be the class of the graphs whose majors (vertices of degree ∆) have local degree sum at most ∆2−∆ (by ‘local degree sum’ of a vertex x we mean the sum of the degrees of the neighbours of x). We show that almost every graph is in X and, by extending the recolouring procedure used by Vizing’s in the proof for his theorem, we show that every graph in X is Class 1. We further achieve results in other graph classes, such as join graphs, circular-arc graphs, and complementary prisms. For instance, we show that a complementary prism can be Class 2 only if it is a regular graph distinct from the K2. Concerning join graphs, we show that if G1 and G2 are disjoint graphs such that |V(G1)|6|V(G2)|and ∆(G1) > ∆(G2), and if the majors of G1 induce an acyclic graph, thenthejoingraphG1∗G2 isClass1. Besidestheseresultsonedge-colouring,we present partial results on total colouring joingraphs,cobipartitegraphs,andcircular-arcgraphs, as well as a discussion on a recolouring procedure for total colouring.O índice cromático de um grafo G é o menor número de cores necessário para colorir as arestas de G de modo que não haja duas arestas adjacentes recebendo a mesma cor. Pelo célebre Teorema de Vizing, o índice cromático de qualquer grafo simples G ou é seu grau máximo ∆, ou é ∆ +1, em cujo caso G é dito Classe 1 ou Classe 2, respectivamente. Computar uma coloração de arestas ótima de um grafo ou simplesmente determinar seu índice cromático são problemas NP-difíceis importantes que aparecem em aplicações notáveis, como redes de sensores, redes ópticas, controle de produção, e jogos. Neste trabalho, nós apresentamos novos procedimentos de tempo polinomial para colorir otimamente as arestas de grafos pertences a alguns conjuntos grandes. Por exemplo, seja X a classe dos grafos cujos maiorais (vértices de grau ∆) possuem soma local de graus no máximo ∆2−∆ (entendemos por ‘soma local de graus’ de um vértice x a soma dos graus dos vizinhos de x). Nós mostramos que quase todo grafo está em X e, estendendo o procedimento de recoloração que Vizing usou na prova para seu teorema, mostramos que todo grafo em X é Classe 1. Nós também conseguimos resultados em outras classes de grafos, como os grafos-junção, os grafos arco-circulares, e os prismas complementares. Como um exemplo, nós mostramos que um prisma complementar só pode ser Classe2 se for um grafo regular distinto do K2. No que diz respeito aos grafos-junção, nós mostramos que se G1 e G2 são grafos disjuntos tais que|V(G1)|6|V(G2)|e ∆(G1) > ∆(G2), e se os maiorais de G1 induzem um grafo acíclico, então o grafo-junção G1∗G2 é Classe1. Além desses resultados em coloração de arestas, apresentamos resultados parciais em coloração total de grafos-junção, de grafos arco-circulares, e de grafos cobipartidos, bem como discutimos um procedimento de recoloração para coloração total.Universidade Federal do ParanáBrasilUFPRCarmo, RenatoGuedes, André Luiz PiresZatesko, Leandro Miranda20182019-03-11T11:35:57Z20192019-03-11T11:35:57Z2018info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttps://rd.uffs.edu.br/handle/prefix/2550enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFFS (Repositório Digital da UFFS)instname:Universidade Federal Fronteira do Sul (UFFS)instacron:UFFS2019-03-11T11:35:57Zoai:rd.uffs.edu.br:prefix/2550Repositório InstitucionalPUBhttps://rd.uffs.edu.br/oai/requestfranciele.cruz@uffs.edu.bropendoar:39242019-03-11T11:35:57Repositório Institucional da UFFS (Repositório Digital da UFFS) - Universidade Federal Fronteira do Sul (UFFS)false
dc.title.none.fl_str_mv Novel procedures for graph edge-colouring
title Novel procedures for graph edge-colouring
spellingShingle Novel procedures for graph edge-colouring
Zatesko, Leandro Miranda
Teoria dos grafos
Algoritmos e estrutura de dados
title_short Novel procedures for graph edge-colouring
title_full Novel procedures for graph edge-colouring
title_fullStr Novel procedures for graph edge-colouring
title_full_unstemmed Novel procedures for graph edge-colouring
title_sort Novel procedures for graph edge-colouring
author Zatesko, Leandro Miranda
author_facet Zatesko, Leandro Miranda
author_role author
dc.contributor.none.fl_str_mv Carmo, Renato
Guedes, André Luiz Pires
dc.contributor.author.fl_str_mv Zatesko, Leandro Miranda
dc.subject.por.fl_str_mv Teoria dos grafos
Algoritmos e estrutura de dados
topic Teoria dos grafos
Algoritmos e estrutura de dados
description The chromatic index of a graph G is the minimum number of colours needed to colour the edges of G in a manner that no two adjacent edges receive the same colour. By the celebrated Vizing’s Theorem, the chromatic index of any simple graph G is either its maximum degree ∆ or it is ∆+1, in which case G is said to be Class 1 or Class 2, respectively. Computing an optimal edge-colouring of a graph or simply determining its chromatic index are importantNP-hard problems which appear in noteworthy applications, like sensor networks, optical networks, production control, and games. In this work we present novel polynomial-time procedures for optimally edge-colouring graphs belonging to some large sets of graphs. For example, let X be the class of the graphs whose majors (vertices of degree ∆) have local degree sum at most ∆2−∆ (by ‘local degree sum’ of a vertex x we mean the sum of the degrees of the neighbours of x). We show that almost every graph is in X and, by extending the recolouring procedure used by Vizing’s in the proof for his theorem, we show that every graph in X is Class 1. We further achieve results in other graph classes, such as join graphs, circular-arc graphs, and complementary prisms. For instance, we show that a complementary prism can be Class 2 only if it is a regular graph distinct from the K2. Concerning join graphs, we show that if G1 and G2 are disjoint graphs such that |V(G1)|6|V(G2)|and ∆(G1) > ∆(G2), and if the majors of G1 induce an acyclic graph, thenthejoingraphG1∗G2 isClass1. Besidestheseresultsonedge-colouring,we present partial results on total colouring joingraphs,cobipartitegraphs,andcircular-arcgraphs, as well as a discussion on a recolouring procedure for total colouring.
publishDate 2018
dc.date.none.fl_str_mv 2018
2018
2019-03-11T11:35:57Z
2019
2019-03-11T11:35:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://rd.uffs.edu.br/handle/prefix/2550
url https://rd.uffs.edu.br/handle/prefix/2550
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal do Paraná
Brasil
UFPR
publisher.none.fl_str_mv Universidade Federal do Paraná
Brasil
UFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFFS (Repositório Digital da UFFS)
instname:Universidade Federal Fronteira do Sul (UFFS)
instacron:UFFS
instname_str Universidade Federal Fronteira do Sul (UFFS)
instacron_str UFFS
institution UFFS
reponame_str Repositório Institucional da UFFS (Repositório Digital da UFFS)
collection Repositório Institucional da UFFS (Repositório Digital da UFFS)
repository.name.fl_str_mv Repositório Institucional da UFFS (Repositório Digital da UFFS) - Universidade Federal Fronteira do Sul (UFFS)
repository.mail.fl_str_mv franciele.cruz@uffs.edu.br
_version_ 1835721298297225216