Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithms
Main Author: | |
---|---|
Publication Date: | 2021 |
Format: | Master thesis |
Language: | por |
Source: | Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
Download full: | http://repositorio.ufes.br/handle/10/14846 |
Summary: | This dissertation proposes the use of the fiber Bragg grating (FBG) temperature sensors array to estimate the fluid level. A optical fiber sensor (OFS) level is ideal for evaluating oil tank level because it is a sensor that does not conduct electricity, is small size and resists corrosive areas. However, these sensors are complex to assemble, requiring several steps after fiber fabrication. Due to the temperature variation inside the tank, there is a need for a temperature sensor with no connection to these sensors, to measure the temperature. FBGs are intrinsically sensitive to temperature and strain. Therefore, level sensors also need a temperature sensor to reduce the temperature cross-sensitivity issues. To demonstrate the possibility of using the FBG temperature sensor for liquid level estimation, the temperature distribution of an oil storage tank, 200 cm height and 40 cm in diameter, receiving solar radiation at the top, is simulated. Then, the presence of a 200 cm long and 125 µm diameter fiber inside the tank with different amounts and distribution of FBGs along the fiber is simulated. In the simulation, due to the low variability of the classes, the Random Forest (RF) algorithm was chosen for classification. Starting with 200 FBG equidistant, decreasing to 6, with different distributions along the fiber. It was possible to classify the oil with an accuracy of 94.89% using 8 FBGs, using Tests for Two Proportions with a significance of 5%, the accuracy is equal to use 50 FBGs. Using the results obtained in the simulation, we utlized a 22.5 cm beaker, with 3 FBGs inside. In the beaker, 3 different fluids are identified: water, mineral oil, and kyro oil. Afterwards their levels are estimated from the temperature distribution along the beaker (using the 3 FBGs). Furthermore, we keep the fluid inside the beaker heated by a peltier at the bottom of the beaker to 318.15 K during the entire experiment. We followed the same principle for the beaker experiment, using RF for both level identification, obtaining 100% accuracy in fluid identification, and fluid level measurement the mid RMSE was 0.2603. After the simulation commented above, and the bench tests, using the beaker at constant temperature, we decided to expand the experiment. In this way we propose a full-scale experiment, using 9 FBGs distributed in this tank to estimate the liquid level. The tank is 100 cm in height and 30 cm in width, with 9 FBG sensors distributed along with the tank height. For the detection, we use the following Machine Learning (ML) algorithms: Logistic Regression (LogR), Decision Tree (DT) and Support Vector Machine (SVM). Initially the algorithm chosen was RF, but when using it we obtained RMSE of 16.32 cm. The algorithms chosen are Weighted Linear Regression (WLR), Support Vector Regression (SVR), SVR with kernel selection minimize cost (SVRmin). We propose the Mixed Model (MM), which selects the lowest Root Mean Square Error (RMSE) among the tested regression algorithms at each level, and associates it to it. The MM has RMSE of 3.56 cm, which is approximately four times smaller than when using WLR. The SVM and SVMmin have RMSE of 6.28 cm and 6.14 cm, respectively. |
id |
UFES_b14ba9f763bc0b5eebbda9648e8d13ab |
---|---|
oai_identifier_str |
oai:repositorio.ufes.br:10/14846 |
network_acronym_str |
UFES |
network_name_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository_id_str |
2108 |
spelling |
Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithmsLiquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithmsFBGsensores de temperaturaaprendizado de máquinasflorestas aleatóriasregressão linear ponderadamáquinas de vetor suportemáquinas de vetor suporte para regressãoárvore de decisãoregressão logísticasubject.br-rjbnEngenharia ElétricaThis dissertation proposes the use of the fiber Bragg grating (FBG) temperature sensors array to estimate the fluid level. A optical fiber sensor (OFS) level is ideal for evaluating oil tank level because it is a sensor that does not conduct electricity, is small size and resists corrosive areas. However, these sensors are complex to assemble, requiring several steps after fiber fabrication. Due to the temperature variation inside the tank, there is a need for a temperature sensor with no connection to these sensors, to measure the temperature. FBGs are intrinsically sensitive to temperature and strain. Therefore, level sensors also need a temperature sensor to reduce the temperature cross-sensitivity issues. To demonstrate the possibility of using the FBG temperature sensor for liquid level estimation, the temperature distribution of an oil storage tank, 200 cm height and 40 cm in diameter, receiving solar radiation at the top, is simulated. Then, the presence of a 200 cm long and 125 µm diameter fiber inside the tank with different amounts and distribution of FBGs along the fiber is simulated. In the simulation, due to the low variability of the classes, the Random Forest (RF) algorithm was chosen for classification. Starting with 200 FBG equidistant, decreasing to 6, with different distributions along the fiber. It was possible to classify the oil with an accuracy of 94.89% using 8 FBGs, using Tests for Two Proportions with a significance of 5%, the accuracy is equal to use 50 FBGs. Using the results obtained in the simulation, we utlized a 22.5 cm beaker, with 3 FBGs inside. In the beaker, 3 different fluids are identified: water, mineral oil, and kyro oil. Afterwards their levels are estimated from the temperature distribution along the beaker (using the 3 FBGs). Furthermore, we keep the fluid inside the beaker heated by a peltier at the bottom of the beaker to 318.15 K during the entire experiment. We followed the same principle for the beaker experiment, using RF for both level identification, obtaining 100% accuracy in fluid identification, and fluid level measurement the mid RMSE was 0.2603. After the simulation commented above, and the bench tests, using the beaker at constant temperature, we decided to expand the experiment. In this way we propose a full-scale experiment, using 9 FBGs distributed in this tank to estimate the liquid level. The tank is 100 cm in height and 30 cm in width, with 9 FBG sensors distributed along with the tank height. For the detection, we use the following Machine Learning (ML) algorithms: Logistic Regression (LogR), Decision Tree (DT) and Support Vector Machine (SVM). Initially the algorithm chosen was RF, but when using it we obtained RMSE of 16.32 cm. The algorithms chosen are Weighted Linear Regression (WLR), Support Vector Regression (SVR), SVR with kernel selection minimize cost (SVRmin). We propose the Mixed Model (MM), which selects the lowest Root Mean Square Error (RMSE) among the tested regression algorithms at each level, and associates it to it. The MM has RMSE of 3.56 cm, which is approximately four times smaller than when using WLR. The SVM and SVMmin have RMSE of 6.28 cm and 6.14 cm, respectively.Esta dissertação propõe a utilização de grades de Bragg em fibra (FBG) para estimar o nível do fluido. O sensor de fibra óptica (OFS) de nível é ideal para avaliar o nível do tanque de óleo porque é um sensor que não conduz eletricidade, é de pequena dimensão e resiste a áreas corrosivas. No entanto, estes sensores são complexos de montar, exigindo várias etapas após a fabricação da fibra. Devido à variação de temperatura dentro do tanque, há a necessidade de um sensor de temperatura sem ligação a estes sensores, para medir a temperatura. As FBGs são intrinsecamente sensíveis à temperatura e a tensão. Portanto, os sensores de nível também precisam de um sensor de temperatura para reduzir os problemas de sensibilidade cruzada de temperatura. Assim, a estimativa do nível utilizando apenas a resposta de temperatura resulta em benefícios operacionais e econômicos, uma vez que há menos sensores e fácil montagem do conjunto de sensores. Este trabalho propõe a utilização de sensores de temperatura FBG para identificar os fluidos. A estimativa do nível utilizando apenas a temperatura resulta em benefícios operacionais e econômicos. Para demonstrar a possibilidade de utilizar o sensor de temperatura FBG para a estimativa do nível de líquidos, é simulada a distribuição da temperatura de um tanque de armazenamento de petróleo, 200 cm de altura e 40 cm de diâmetro, recebendo a radiação solar no topo. Depois, é simulada a presença de uma fibra de 200 cm de comprimento e 125 µm de diâmetro dentro do tanque com diferentes quantidades e distribuição de FBG ao longo da fibra. Na simulação, devido à baixa variabilidade das classes, foi escolhido o algoritmo Random Forest (RF) para a classificação. Começando com 200 FBG equidistantes, diminuindo para 6, com diferentes distribuições ao longo da fibra. Foi possível classificar o óleo com uma precisão de 94,89% usando 8 FBGs, usando Testes para Duas Proporções com um significado de 5%, a precisão é igual a usar 50 FBGs. Utilizando os resultados obtidos na simulação, foi utilizado um béquer de 22,5 cm, com 3 FBGs no interior. No béquer, são inseridos 3 fluidos diferentes: água, óleo mineral, e óleo kyro. Posteriormente, os níveis são estimados a partir da distribuição da temperatura ao longo do béquer (utilizando os 3 FBGs). Além disso, mantemos o fluido no interior do copo aquecido por um peltier no fundo do copo a 318,15 K durante toda a experiência. Seguimos o mesmo princípio para a experiência do béquer, utilizando RF para a identificação do nível, obtendo uma precisão de 100% na identificação do fluido, e a medição do nível de fluido a RMSE média foi de 0,2603. Após a simulação comentada acima, e os testes de bancada, utilizando o béquer a temperatura constante, decidimos expandir a experiência. Desta forma, propomos uma experiência à escala real, utilizando 9 FBGs distribuídos num tanque para estimar o nível de líquido. O tanque possui 100 cm de altura e 30 cm de largura, com 9 sensores FBG distribuídos juntamente com a altura do tanque. Para a detecção, utilizamos os seguintes algoritmos de Aprendizado de máquina (ML): Regressão logística (LogR), Árvore de decisão (DT) e Máquina de vetor suporte (SVM). Escolhemos os algoritmos com base na sua usabilidade na literatura e consolidação teórica. O algoritmo com os melhores resultados entre os testados é o DT, resultando numa precisão média de 89,54%. Inicialmente o algoritmo escolhido foi o RF, mas ao utilizá-lo obtivemos RMSE de 16,32 cm. Os algoritmos escolhidos são: Regressão linear ponderada (WLR), Máquinas de vetor suporte para regressão (SVR) e SVR com seleção de kernel que minimize o custo (SVRmin). Propomos o Modelo Misto (MM), que seleciona a menor Raiz do Erro Quadrático Médio (RMSE) entre os algoritmos de regressão testados em cada nível. O MM tem um RMSE de 3,56 cm, que é aproximadamente quatro vezes menor do que quando se utiliza o WLR. O SVM e o SVMmin têm RMSE de 6,28 cm e 6,14 cm, respectivamente.Universidade Federal do Espírito SantoBRMestrado em Engenharia ElétricaCentro TecnológicoUFESPrograma de Pós-Graduação em Engenharia ElétricaLeal Junior, Arnaldo Gomeshttps://orcid.org/0000000290750619http://lattes.cnpq.br/7246557168481527Pontes, Maria JoséMarques, Carlos Alberto FerreiraPereira, Katiuski2024-05-30T00:49:36Z2024-05-30T00:49:36Z2021-05-05info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisTextapplication/pdfhttp://repositorio.ufes.br/handle/10/14846porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes)instname:Universidade Federal do Espírito Santo (UFES)instacron:UFES2024-12-09T22:14:12Zoai:repositorio.ufes.br:10/14846Repositório InstitucionalPUBhttp://repositorio.ufes.br/oai/requestriufes@ufes.bropendoar:21082024-12-09T22:14:12Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES)false |
dc.title.none.fl_str_mv |
Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithms Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithms |
title |
Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithms |
spellingShingle |
Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithms Pereira, Katiuski FBG sensores de temperatura aprendizado de máquinas florestas aleatórias regressão linear ponderada máquinas de vetor suporte máquinas de vetor suporte para regressão árvore de decisão regressão logística subject.br-rjbn Engenharia Elétrica |
title_short |
Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithms |
title_full |
Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithms |
title_fullStr |
Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithms |
title_full_unstemmed |
Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithms |
title_sort |
Liquid level estimation and fluid identification using FBG temperature sensors via machine learning algorithms |
author |
Pereira, Katiuski |
author_facet |
Pereira, Katiuski |
author_role |
author |
dc.contributor.none.fl_str_mv |
Leal Junior, Arnaldo Gomes https://orcid.org/0000000290750619 http://lattes.cnpq.br/7246557168481527 Pontes, Maria José Marques, Carlos Alberto Ferreira |
dc.contributor.author.fl_str_mv |
Pereira, Katiuski |
dc.subject.por.fl_str_mv |
FBG sensores de temperatura aprendizado de máquinas florestas aleatórias regressão linear ponderada máquinas de vetor suporte máquinas de vetor suporte para regressão árvore de decisão regressão logística subject.br-rjbn Engenharia Elétrica |
topic |
FBG sensores de temperatura aprendizado de máquinas florestas aleatórias regressão linear ponderada máquinas de vetor suporte máquinas de vetor suporte para regressão árvore de decisão regressão logística subject.br-rjbn Engenharia Elétrica |
description |
This dissertation proposes the use of the fiber Bragg grating (FBG) temperature sensors array to estimate the fluid level. A optical fiber sensor (OFS) level is ideal for evaluating oil tank level because it is a sensor that does not conduct electricity, is small size and resists corrosive areas. However, these sensors are complex to assemble, requiring several steps after fiber fabrication. Due to the temperature variation inside the tank, there is a need for a temperature sensor with no connection to these sensors, to measure the temperature. FBGs are intrinsically sensitive to temperature and strain. Therefore, level sensors also need a temperature sensor to reduce the temperature cross-sensitivity issues. To demonstrate the possibility of using the FBG temperature sensor for liquid level estimation, the temperature distribution of an oil storage tank, 200 cm height and 40 cm in diameter, receiving solar radiation at the top, is simulated. Then, the presence of a 200 cm long and 125 µm diameter fiber inside the tank with different amounts and distribution of FBGs along the fiber is simulated. In the simulation, due to the low variability of the classes, the Random Forest (RF) algorithm was chosen for classification. Starting with 200 FBG equidistant, decreasing to 6, with different distributions along the fiber. It was possible to classify the oil with an accuracy of 94.89% using 8 FBGs, using Tests for Two Proportions with a significance of 5%, the accuracy is equal to use 50 FBGs. Using the results obtained in the simulation, we utlized a 22.5 cm beaker, with 3 FBGs inside. In the beaker, 3 different fluids are identified: water, mineral oil, and kyro oil. Afterwards their levels are estimated from the temperature distribution along the beaker (using the 3 FBGs). Furthermore, we keep the fluid inside the beaker heated by a peltier at the bottom of the beaker to 318.15 K during the entire experiment. We followed the same principle for the beaker experiment, using RF for both level identification, obtaining 100% accuracy in fluid identification, and fluid level measurement the mid RMSE was 0.2603. After the simulation commented above, and the bench tests, using the beaker at constant temperature, we decided to expand the experiment. In this way we propose a full-scale experiment, using 9 FBGs distributed in this tank to estimate the liquid level. The tank is 100 cm in height and 30 cm in width, with 9 FBG sensors distributed along with the tank height. For the detection, we use the following Machine Learning (ML) algorithms: Logistic Regression (LogR), Decision Tree (DT) and Support Vector Machine (SVM). Initially the algorithm chosen was RF, but when using it we obtained RMSE of 16.32 cm. The algorithms chosen are Weighted Linear Regression (WLR), Support Vector Regression (SVR), SVR with kernel selection minimize cost (SVRmin). We propose the Mixed Model (MM), which selects the lowest Root Mean Square Error (RMSE) among the tested regression algorithms at each level, and associates it to it. The MM has RMSE of 3.56 cm, which is approximately four times smaller than when using WLR. The SVM and SVMmin have RMSE of 6.28 cm and 6.14 cm, respectively. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-05-05 2024-05-30T00:49:36Z 2024-05-30T00:49:36Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://repositorio.ufes.br/handle/10/14846 |
url |
http://repositorio.ufes.br/handle/10/14846 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
Text application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
publisher.none.fl_str_mv |
Universidade Federal do Espírito Santo BR Mestrado em Engenharia Elétrica Centro Tecnológico UFES Programa de Pós-Graduação em Engenharia Elétrica |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) instname:Universidade Federal do Espírito Santo (UFES) instacron:UFES |
instname_str |
Universidade Federal do Espírito Santo (UFES) |
instacron_str |
UFES |
institution |
UFES |
reponame_str |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
collection |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Espírito Santo (riUfes) - Universidade Federal do Espírito Santo (UFES) |
repository.mail.fl_str_mv |
riufes@ufes.br |
_version_ |
1834478861227655168 |