DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS

Bibliographic Details
Main Author: Almeida, Rafael da Costa
Publication Date: 2021
Other Authors: Assunção Neto, Wilson Vitorino de, Silva, Verônica Brito da, Carvalho, Leonardo Castelo Branco, Lopes, Ângela Celis de Almeida, Gomes, Regina Lucia Ferreira
Format: Article
Language: eng
Source: Revista Caatinga
Download full: https://periodicos.ufersa.edu.br/caatinga/article/view/9292
Summary: Morpho-agronomic characterization studies aiming at the discrimination and classification of lima bean accessions in relation to the centers of domestication and biological status have been of great importance for conserving the biodiversity of this species. For this purpose, researchers have widely used the multivariate analysis called discriminant analysis, which is not always capable of producing satisfactory results. Computational intelligence-based classifiers are additional tools for understanding complex classification problems. In this study, the objective was to test the use of the decision tree in the classification of lima bean according to the centers of domestication and biological status (cultivated and wild), based on eight phenotypic traits of the seed. Sixty accessions of lima bean from the Phaseolus Germplasm Bank of Universidade Federal do Piauí (BGP / UFPI) were evaluated, and classification was performed using two approaches: conventional statistics with discriminant analysis of principal components (DAPC) and computational intelligence through decision tree (DT). The results showed that the use of DT was efficient to identify patterns in the classification of lima bean accessions, due to its comprehensibility. Seed weight was one of the main descriptors used to explain the origin and diversity of the species. The results found will be useful for studies that involve the conservation of genetic resources, mainly for the maintenance of germplasm banks and in breeding programs. In addition, it is recommended to integrate machine learning algorithms in studies aimed at classifying lima bean.  
id UFERSA-1_4e4d5d4709810aaf8deeeece4aa9a96a
oai_identifier_str oai:ojs.periodicos.ufersa.edu.br:article/9292
network_acronym_str UFERSA-1
network_name_str Revista Caatinga
repository_id_str
spelling DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONSÁRVORE DE DECISÃO COMO FERRAMENTA NA CLASSIFICAÇÃO DE ACESSOS DE FEIJÃO-FAVAPhaseolus lunatus L. Aprendizado de máquina. Inteligência computacional. Métodos multivariados.Phaseolus lunatus L. Machine learning. Computational intelligence. Multivariate methods.Morpho-agronomic characterization studies aiming at the discrimination and classification of lima bean accessions in relation to the centers of domestication and biological status have been of great importance for conserving the biodiversity of this species. For this purpose, researchers have widely used the multivariate analysis called discriminant analysis, which is not always capable of producing satisfactory results. Computational intelligence-based classifiers are additional tools for understanding complex classification problems. In this study, the objective was to test the use of the decision tree in the classification of lima bean according to the centers of domestication and biological status (cultivated and wild), based on eight phenotypic traits of the seed. Sixty accessions of lima bean from the Phaseolus Germplasm Bank of Universidade Federal do Piauí (BGP / UFPI) were evaluated, and classification was performed using two approaches: conventional statistics with discriminant analysis of principal components (DAPC) and computational intelligence through decision tree (DT). The results showed that the use of DT was efficient to identify patterns in the classification of lima bean accessions, due to its comprehensibility. Seed weight was one of the main descriptors used to explain the origin and diversity of the species. The results found will be useful for studies that involve the conservation of genetic resources, mainly for the maintenance of germplasm banks and in breeding programs. In addition, it is recommended to integrate machine learning algorithms in studies aimed at classifying lima bean.  Estudos de caracterização morfoagronômica que visam a discriminação e classificação de acessos de feijão-fava quanto aos centros de domesticação e estado biológico têm sido de grande importância para a conservação da biodiversidade da espécie. Para esse fim, é muito utilizada a análise multivariada denominada análise discriminante, que nem sempre é capaz de produzir resultados satisfatórios. Classificadores baseados em inteligência computacional constituem-se ferramentas adicionais para a compreensão de problemas complexos de classificação. Neste estudo, objetivou-se testar o uso da árvore de decisão na classificação do feijão-fava de acordo com os centros de domesticação e estado biológico (cultivado e silvestre), com base em oito caracteres fenotípicos da semente. Foram avaliados 60 acessos de feijão-fava do Banco de Germoplasma de Phaseolus da Universidade Federal do Piauí (BGP/UFPI), em cuja classificação foram utilizadas duas abordagens: estatística convencional com análise discriminante sob componentes principais (DAPC) e inteligência computacional por meio da árvore de decisão (AD). Os resultados mostraram que o uso da AD foi eficiente para identificar padrões na classificação dos acessos de feijão-fava, devido à sua compreensibilidade. O peso da semente foi um dos principais descritores utilizado para explicar a origem e a diversidade da espécie. Os resultados encontrados serão úteis para estudos que envolvem a conservação de recursos genéticos, principalmente para a manutenção de bancos de germoplasma e em programas de melhoramento. Além disso, recomenda-se a integração de algoritmos de aprendizado de máquina em estudos voltados à classificação de feijão-fava.  Universidade Federal Rural do Semi-Árido2021-05-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/929210.1590/1983-21252021v34n223rcREVISTA CAATINGA; Vol. 34 No. 2 (2021); 471-478Revista Caatinga; v. 34 n. 2 (2021); 471-4781983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/9292/10628Copyright (c) 2021 Revista Caatingainfo:eu-repo/semantics/openAccessAlmeida, Rafael da CostaAssunção Neto, Wilson Vitorino deSilva, Verônica Brito daCarvalho, Leonardo Castelo BrancoLopes, Ângela Celis de AlmeidaGomes, Regina Lucia Ferreira2023-07-19T12:17:11Zoai:ojs.periodicos.ufersa.edu.br:article/9292Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2023-07-19T12:17:11Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)false
dc.title.none.fl_str_mv DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS
ÁRVORE DE DECISÃO COMO FERRAMENTA NA CLASSIFICAÇÃO DE ACESSOS DE FEIJÃO-FAVA
title DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS
spellingShingle DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS
Almeida, Rafael da Costa
Phaseolus lunatus L. Aprendizado de máquina. Inteligência computacional. Métodos multivariados.
Phaseolus lunatus L. Machine learning. Computational intelligence. Multivariate methods.
title_short DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS
title_full DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS
title_fullStr DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS
title_full_unstemmed DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS
title_sort DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS
author Almeida, Rafael da Costa
author_facet Almeida, Rafael da Costa
Assunção Neto, Wilson Vitorino de
Silva, Verônica Brito da
Carvalho, Leonardo Castelo Branco
Lopes, Ângela Celis de Almeida
Gomes, Regina Lucia Ferreira
author_role author
author2 Assunção Neto, Wilson Vitorino de
Silva, Verônica Brito da
Carvalho, Leonardo Castelo Branco
Lopes, Ângela Celis de Almeida
Gomes, Regina Lucia Ferreira
author2_role author
author
author
author
author
dc.contributor.author.fl_str_mv Almeida, Rafael da Costa
Assunção Neto, Wilson Vitorino de
Silva, Verônica Brito da
Carvalho, Leonardo Castelo Branco
Lopes, Ângela Celis de Almeida
Gomes, Regina Lucia Ferreira
dc.subject.por.fl_str_mv Phaseolus lunatus L. Aprendizado de máquina. Inteligência computacional. Métodos multivariados.
Phaseolus lunatus L. Machine learning. Computational intelligence. Multivariate methods.
topic Phaseolus lunatus L. Aprendizado de máquina. Inteligência computacional. Métodos multivariados.
Phaseolus lunatus L. Machine learning. Computational intelligence. Multivariate methods.
description Morpho-agronomic characterization studies aiming at the discrimination and classification of lima bean accessions in relation to the centers of domestication and biological status have been of great importance for conserving the biodiversity of this species. For this purpose, researchers have widely used the multivariate analysis called discriminant analysis, which is not always capable of producing satisfactory results. Computational intelligence-based classifiers are additional tools for understanding complex classification problems. In this study, the objective was to test the use of the decision tree in the classification of lima bean according to the centers of domestication and biological status (cultivated and wild), based on eight phenotypic traits of the seed. Sixty accessions of lima bean from the Phaseolus Germplasm Bank of Universidade Federal do Piauí (BGP / UFPI) were evaluated, and classification was performed using two approaches: conventional statistics with discriminant analysis of principal components (DAPC) and computational intelligence through decision tree (DT). The results showed that the use of DT was efficient to identify patterns in the classification of lima bean accessions, due to its comprehensibility. Seed weight was one of the main descriptors used to explain the origin and diversity of the species. The results found will be useful for studies that involve the conservation of genetic resources, mainly for the maintenance of germplasm banks and in breeding programs. In addition, it is recommended to integrate machine learning algorithms in studies aimed at classifying lima bean.  
publishDate 2021
dc.date.none.fl_str_mv 2021-05-10
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/9292
10.1590/1983-21252021v34n223rc
url https://periodicos.ufersa.edu.br/caatinga/article/view/9292
identifier_str_mv 10.1590/1983-21252021v34n223rc
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://periodicos.ufersa.edu.br/caatinga/article/view/9292/10628
dc.rights.driver.fl_str_mv Copyright (c) 2021 Revista Caatinga
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Revista Caatinga
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
publisher.none.fl_str_mv Universidade Federal Rural do Semi-Árido
dc.source.none.fl_str_mv REVISTA CAATINGA; Vol. 34 No. 2 (2021); 471-478
Revista Caatinga; v. 34 n. 2 (2021); 471-478
1983-2125
0100-316X
reponame:Revista Caatinga
instname:Universidade Federal Rural do Semi-Árido (UFERSA)
instacron:UFERSA
instname_str Universidade Federal Rural do Semi-Árido (UFERSA)
instacron_str UFERSA
institution UFERSA
reponame_str Revista Caatinga
collection Revista Caatinga
repository.name.fl_str_mv Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)
repository.mail.fl_str_mv patricio@ufersa.edu.br|| caatinga@ufersa.edu.br
_version_ 1831468652144099328