DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS
| Main Author: | |
|---|---|
| Publication Date: | 2021 |
| Other Authors: | , , , , |
| Format: | Article |
| Language: | eng |
| Source: | Revista Caatinga |
| Download full: | https://periodicos.ufersa.edu.br/caatinga/article/view/9292 |
Summary: | Morpho-agronomic characterization studies aiming at the discrimination and classification of lima bean accessions in relation to the centers of domestication and biological status have been of great importance for conserving the biodiversity of this species. For this purpose, researchers have widely used the multivariate analysis called discriminant analysis, which is not always capable of producing satisfactory results. Computational intelligence-based classifiers are additional tools for understanding complex classification problems. In this study, the objective was to test the use of the decision tree in the classification of lima bean according to the centers of domestication and biological status (cultivated and wild), based on eight phenotypic traits of the seed. Sixty accessions of lima bean from the Phaseolus Germplasm Bank of Universidade Federal do Piauí (BGP / UFPI) were evaluated, and classification was performed using two approaches: conventional statistics with discriminant analysis of principal components (DAPC) and computational intelligence through decision tree (DT). The results showed that the use of DT was efficient to identify patterns in the classification of lima bean accessions, due to its comprehensibility. Seed weight was one of the main descriptors used to explain the origin and diversity of the species. The results found will be useful for studies that involve the conservation of genetic resources, mainly for the maintenance of germplasm banks and in breeding programs. In addition, it is recommended to integrate machine learning algorithms in studies aimed at classifying lima bean. |
| id |
UFERSA-1_4e4d5d4709810aaf8deeeece4aa9a96a |
|---|---|
| oai_identifier_str |
oai:ojs.periodicos.ufersa.edu.br:article/9292 |
| network_acronym_str |
UFERSA-1 |
| network_name_str |
Revista Caatinga |
| repository_id_str |
|
| spelling |
DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONSÁRVORE DE DECISÃO COMO FERRAMENTA NA CLASSIFICAÇÃO DE ACESSOS DE FEIJÃO-FAVAPhaseolus lunatus L. Aprendizado de máquina. Inteligência computacional. Métodos multivariados.Phaseolus lunatus L. Machine learning. Computational intelligence. Multivariate methods.Morpho-agronomic characterization studies aiming at the discrimination and classification of lima bean accessions in relation to the centers of domestication and biological status have been of great importance for conserving the biodiversity of this species. For this purpose, researchers have widely used the multivariate analysis called discriminant analysis, which is not always capable of producing satisfactory results. Computational intelligence-based classifiers are additional tools for understanding complex classification problems. In this study, the objective was to test the use of the decision tree in the classification of lima bean according to the centers of domestication and biological status (cultivated and wild), based on eight phenotypic traits of the seed. Sixty accessions of lima bean from the Phaseolus Germplasm Bank of Universidade Federal do Piauí (BGP / UFPI) were evaluated, and classification was performed using two approaches: conventional statistics with discriminant analysis of principal components (DAPC) and computational intelligence through decision tree (DT). The results showed that the use of DT was efficient to identify patterns in the classification of lima bean accessions, due to its comprehensibility. Seed weight was one of the main descriptors used to explain the origin and diversity of the species. The results found will be useful for studies that involve the conservation of genetic resources, mainly for the maintenance of germplasm banks and in breeding programs. In addition, it is recommended to integrate machine learning algorithms in studies aimed at classifying lima bean. Estudos de caracterização morfoagronômica que visam a discriminação e classificação de acessos de feijão-fava quanto aos centros de domesticação e estado biológico têm sido de grande importância para a conservação da biodiversidade da espécie. Para esse fim, é muito utilizada a análise multivariada denominada análise discriminante, que nem sempre é capaz de produzir resultados satisfatórios. Classificadores baseados em inteligência computacional constituem-se ferramentas adicionais para a compreensão de problemas complexos de classificação. Neste estudo, objetivou-se testar o uso da árvore de decisão na classificação do feijão-fava de acordo com os centros de domesticação e estado biológico (cultivado e silvestre), com base em oito caracteres fenotípicos da semente. Foram avaliados 60 acessos de feijão-fava do Banco de Germoplasma de Phaseolus da Universidade Federal do Piauí (BGP/UFPI), em cuja classificação foram utilizadas duas abordagens: estatística convencional com análise discriminante sob componentes principais (DAPC) e inteligência computacional por meio da árvore de decisão (AD). Os resultados mostraram que o uso da AD foi eficiente para identificar padrões na classificação dos acessos de feijão-fava, devido à sua compreensibilidade. O peso da semente foi um dos principais descritores utilizado para explicar a origem e a diversidade da espécie. Os resultados encontrados serão úteis para estudos que envolvem a conservação de recursos genéticos, principalmente para a manutenção de bancos de germoplasma e em programas de melhoramento. Além disso, recomenda-se a integração de algoritmos de aprendizado de máquina em estudos voltados à classificação de feijão-fava. Universidade Federal Rural do Semi-Árido2021-05-10info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfhttps://periodicos.ufersa.edu.br/caatinga/article/view/929210.1590/1983-21252021v34n223rcREVISTA CAATINGA; Vol. 34 No. 2 (2021); 471-478Revista Caatinga; v. 34 n. 2 (2021); 471-4781983-21250100-316Xreponame:Revista Caatingainstname:Universidade Federal Rural do Semi-Árido (UFERSA)instacron:UFERSAenghttps://periodicos.ufersa.edu.br/caatinga/article/view/9292/10628Copyright (c) 2021 Revista Caatingainfo:eu-repo/semantics/openAccessAlmeida, Rafael da CostaAssunção Neto, Wilson Vitorino deSilva, Verônica Brito daCarvalho, Leonardo Castelo BrancoLopes, Ângela Celis de AlmeidaGomes, Regina Lucia Ferreira2023-07-19T12:17:11Zoai:ojs.periodicos.ufersa.edu.br:article/9292Revistahttps://periodicos.ufersa.edu.br/index.php/caatinga/indexPUBhttps://periodicos.ufersa.edu.br/index.php/caatinga/oaipatricio@ufersa.edu.br|| caatinga@ufersa.edu.br1983-21250100-316Xopendoar:2023-07-19T12:17:11Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA)false |
| dc.title.none.fl_str_mv |
DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS ÁRVORE DE DECISÃO COMO FERRAMENTA NA CLASSIFICAÇÃO DE ACESSOS DE FEIJÃO-FAVA |
| title |
DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS |
| spellingShingle |
DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS Almeida, Rafael da Costa Phaseolus lunatus L. Aprendizado de máquina. Inteligência computacional. Métodos multivariados. Phaseolus lunatus L. Machine learning. Computational intelligence. Multivariate methods. |
| title_short |
DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS |
| title_full |
DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS |
| title_fullStr |
DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS |
| title_full_unstemmed |
DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS |
| title_sort |
DECISION TREE AS A TOOL IN THE CLASSIFICATION OF LIMA BEAN ACCESSIONS |
| author |
Almeida, Rafael da Costa |
| author_facet |
Almeida, Rafael da Costa Assunção Neto, Wilson Vitorino de Silva, Verônica Brito da Carvalho, Leonardo Castelo Branco Lopes, Ângela Celis de Almeida Gomes, Regina Lucia Ferreira |
| author_role |
author |
| author2 |
Assunção Neto, Wilson Vitorino de Silva, Verônica Brito da Carvalho, Leonardo Castelo Branco Lopes, Ângela Celis de Almeida Gomes, Regina Lucia Ferreira |
| author2_role |
author author author author author |
| dc.contributor.author.fl_str_mv |
Almeida, Rafael da Costa Assunção Neto, Wilson Vitorino de Silva, Verônica Brito da Carvalho, Leonardo Castelo Branco Lopes, Ângela Celis de Almeida Gomes, Regina Lucia Ferreira |
| dc.subject.por.fl_str_mv |
Phaseolus lunatus L. Aprendizado de máquina. Inteligência computacional. Métodos multivariados. Phaseolus lunatus L. Machine learning. Computational intelligence. Multivariate methods. |
| topic |
Phaseolus lunatus L. Aprendizado de máquina. Inteligência computacional. Métodos multivariados. Phaseolus lunatus L. Machine learning. Computational intelligence. Multivariate methods. |
| description |
Morpho-agronomic characterization studies aiming at the discrimination and classification of lima bean accessions in relation to the centers of domestication and biological status have been of great importance for conserving the biodiversity of this species. For this purpose, researchers have widely used the multivariate analysis called discriminant analysis, which is not always capable of producing satisfactory results. Computational intelligence-based classifiers are additional tools for understanding complex classification problems. In this study, the objective was to test the use of the decision tree in the classification of lima bean according to the centers of domestication and biological status (cultivated and wild), based on eight phenotypic traits of the seed. Sixty accessions of lima bean from the Phaseolus Germplasm Bank of Universidade Federal do Piauí (BGP / UFPI) were evaluated, and classification was performed using two approaches: conventional statistics with discriminant analysis of principal components (DAPC) and computational intelligence through decision tree (DT). The results showed that the use of DT was efficient to identify patterns in the classification of lima bean accessions, due to its comprehensibility. Seed weight was one of the main descriptors used to explain the origin and diversity of the species. The results found will be useful for studies that involve the conservation of genetic resources, mainly for the maintenance of germplasm banks and in breeding programs. In addition, it is recommended to integrate machine learning algorithms in studies aimed at classifying lima bean. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-05-10 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/9292 10.1590/1983-21252021v34n223rc |
| url |
https://periodicos.ufersa.edu.br/caatinga/article/view/9292 |
| identifier_str_mv |
10.1590/1983-21252021v34n223rc |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
https://periodicos.ufersa.edu.br/caatinga/article/view/9292/10628 |
| dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Revista Caatinga info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Copyright (c) 2021 Revista Caatinga |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
| publisher.none.fl_str_mv |
Universidade Federal Rural do Semi-Árido |
| dc.source.none.fl_str_mv |
REVISTA CAATINGA; Vol. 34 No. 2 (2021); 471-478 Revista Caatinga; v. 34 n. 2 (2021); 471-478 1983-2125 0100-316X reponame:Revista Caatinga instname:Universidade Federal Rural do Semi-Árido (UFERSA) instacron:UFERSA |
| instname_str |
Universidade Federal Rural do Semi-Árido (UFERSA) |
| instacron_str |
UFERSA |
| institution |
UFERSA |
| reponame_str |
Revista Caatinga |
| collection |
Revista Caatinga |
| repository.name.fl_str_mv |
Revista Caatinga - Universidade Federal Rural do Semi-Árido (UFERSA) |
| repository.mail.fl_str_mv |
patricio@ufersa.edu.br|| caatinga@ufersa.edu.br |
| _version_ |
1831468652144099328 |