Export Ready — 

Team formation problems: an integer linear optimization approach

Bibliographic Details
Main Author: Figueiredo, Tatiane Fernandes
Publication Date: 2021
Format: Doctoral thesis
Language: eng
Source: Repositório Institucional da Universidade Federal do Ceará (UFC)
Download full: http://www.repositorio.ufc.br/handle/riufc/58283
Summary: Given a group of individuals, each one with a single skill, and a social network capturing the mutual affinity among them, the Team Formation Problem (TFP) aims to find a single team that meets the skills needed to perform a task while seeking to optimize the communication costs between the involved individuals. In the first part of this work, we study a generalized version of the TFP denominated as Multiple Team Formation Problem (MTFP), which allows distinct demands of workers per ability as well as multiple work teams and fractions of dedication time per team for each individual. In this case, the total communication cost is given by the sum of weighted pairwise relations between members within a same team. In the second part, we introduce a new variant of the TFP to be called Competitive Teams Formation Problem (CTFP). Using the theory of social balance, in this problem, we represent the social network that connects the involved individuals as a signed graph and consider both intra-team and inter-teams communication costs by asking to have only positive relationships between individuals of a same team and only negative relationships between individuals of different teams. For the MTFP, we propose an Integer Linear Programming (ILP) formulation and sets of valid inequalities. Computational experiments attest that the ILP model strengthened by valid inequalities consistently outperforms the existing quadratic formulation for MTFP. We also consider a generalized version of the MTFP where individuals may have multiple skills. To handle this version, we adapt the initial ILP model into two new models and present other valid inequalities. For the CTFP, we also propose an ILP formulation and valid inequalities derived from the structural balance theory that enhance the computational performance of the model. Finally, we close this work with general conclusions and directions for future works.
id UFC-7_f0c5dfef0232e6cbda4d9ec5abc9f12f
oai_identifier_str oai:repositorio.ufc.br:riufc/58283
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Figueiredo, Tatiane FernandesCampêlo Neto, Manoel Bezerra2021-05-10T16:48:50Z2021-05-10T16:48:50Z2021FIGUEIREDO, Tatiane Fernandes. Team formation problems: an integer linear optimization approach. 2021. 130 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2021.http://www.repositorio.ufc.br/handle/riufc/58283Given a group of individuals, each one with a single skill, and a social network capturing the mutual affinity among them, the Team Formation Problem (TFP) aims to find a single team that meets the skills needed to perform a task while seeking to optimize the communication costs between the involved individuals. In the first part of this work, we study a generalized version of the TFP denominated as Multiple Team Formation Problem (MTFP), which allows distinct demands of workers per ability as well as multiple work teams and fractions of dedication time per team for each individual. In this case, the total communication cost is given by the sum of weighted pairwise relations between members within a same team. In the second part, we introduce a new variant of the TFP to be called Competitive Teams Formation Problem (CTFP). Using the theory of social balance, in this problem, we represent the social network that connects the involved individuals as a signed graph and consider both intra-team and inter-teams communication costs by asking to have only positive relationships between individuals of a same team and only negative relationships between individuals of different teams. For the MTFP, we propose an Integer Linear Programming (ILP) formulation and sets of valid inequalities. Computational experiments attest that the ILP model strengthened by valid inequalities consistently outperforms the existing quadratic formulation for MTFP. We also consider a generalized version of the MTFP where individuals may have multiple skills. To handle this version, we adapt the initial ILP model into two new models and present other valid inequalities. For the CTFP, we also propose an ILP formulation and valid inequalities derived from the structural balance theory that enhance the computational performance of the model. Finally, we close this work with general conclusions and directions for future works.Dado um conjunto de indivíduos, cada um com uma habilidade única, e uma rede social captando a afinidade mútua entre eles, o Problema de Formação de Equipe (TFP -Team Formation Problem) visa encontrar uma única equipe que reúna as habilidades necessárias para realizar uma tarefa, enquanto busca otimizar os custos de comunicação entre os indivíduos envolvidos. Na primeira parte deste trabalho, estudamos uma generalização do TFP denominada como Problema de Formação de Múltiplas Equipes (MTFP - Multiple Team Formation Problem), que permite demandas distintas de trabalhadores para cada tipo de habilidade, assim como requisições de múltiplas equipes de trabalho e possibilidade de fracionamento do tempo de dedicação de cada indivíduo entre os times. Nesse caso, o custo total de comunicação é dado pela soma dos pesos das relações dos pares de indivíduos de um mesmo time. Na segunda parte, introduzimos uma nova variante do TFP, a ser chamada Problema de Formação de Equipes Competitivas (CTFP - Competitive Teams Formation Problem). Utilizando a teoria do equilíbrio social, neste problema, representamos a rede social que conecta os indivíduos envolvidos por meio de um grafo de sinal e consideramos simultaneamente custos de comunicação intra-equipe e inter-equipes, requisitando que haja apenas relações positivas entre indivíduos de uma mesma equipe e apenas relações negativas entre indivíduos de equipes diferentes. Para o MTFP, propomos uma formulação de Programação Linear Inteira (ILP) e famílias de desigualdades válidas. Experimentos computacionais atestam que o modelo ILP fortalecido por desigualdades válidas supera consistentemente a formulação quadrática apresentada na literatura para resolução do MTFP. Também consideramos uma versão generalizada do MTFP em que os indivíduos podem ter múltiplas habilidades. Para lidar com esta versão, adaptamos o modelo ILP inicial, gerando dois novos modelos, e apresentamos um outro conjunto de desigualdades válidas que fortalecem os dois modelos. Para o CTFP, também propomos uma formulação ILP, além de desigualdades válidas derivadas da teoria do equilíbrio estrutural que melhoram o desempenho computacional do modelo. Por fim, encerramos este trabalho com conclusões gerais e direções para trabalhos futuros.Team formation problemSocial balanceBranch & cutValid inequalityReformulation linearization techniqueTeam formation problems: an integer linear optimization approachTeam formation problems: an integer linear optimization approachinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2021_tese_tffigueiredo.pdf2021_tese_tffigueiredo.pdfapplication/pdf1525985http://repositorio.ufc.br/bitstream/riufc/58283/3/2021_tese_tffigueiredo.pdf95e5515300b6de97c31848cc7bb8fae4MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-82125http://repositorio.ufc.br/bitstream/riufc/58283/4/license.txtce2f77d9db6511060b9277b356f86c2dMD54riufc/582832021-05-10 13:48:50.415oai:repositorio.ufc.br:riufc/58283TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIA0KDQpBbyBjb25jb3JkYXIgY29tIGVzdGEgbGljZW7Dp2EsIHZvY8OqKHMpIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgb2JyYSBhcXVpIGRlc2NyaXRhIGNvbmNlZGUobSkgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBkZXBvc2l0YWRvIGVtIGZvcm1hdG8gaW1wcmVzc28sIGVsZXRyw7RuaWNvIG91IGVtIHF1YWxxdWVyIG91dHJvIG1laW8uIFZvY8OqIGNvbmNvcmRhKG0pIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCBjb252ZXJ0ZXIgbyBhcnF1aXZvIGRlcG9zaXRhZG8gYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4gVm9jw6oocykgdGFtYsOpbSBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGVzdGUgZGVww7NzaXRvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUvb3UgcHJlc2VydmHDp8Ojby4gVm9jw6ogZGVjbGFyYSBxdWUgYSBhcHJlc2VudGHDp8OjbyBkbyBzZXUgdHJhYmFsaG8gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6oocykgcG9kZShtKSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhKG0pIHF1ZSBvIGVudmlvIMOpIGRlIHNldSBjb25oZWNpbWVudG8gZSBuw6NvIGluZnJpbmdlIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG91dHJhIHBlc3NvYSBvdSBpbnN0aXR1acOnw6NvLiBDYXNvIG8gZG9jdW1lbnRvIGEgc2VyIGRlcG9zaXRhZG8gY29udGVuaGEgbWF0ZXJpYWwgcGFyYSBvIHF1YWwgdm9jw6oocykgbsOjbyBkZXTDqW0gYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGRlIGF1dG9yYWlzLCB2b2PDqihzKSBkZWNsYXJhKG0pIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSBlIHF1ZSBvcyBtYXRlcmlhaXMgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zLCBlc3TDo28gZGV2aWRhbWVudGUgaWRlbnRpZmljYWRvcyBlIHJlY29uaGVjaWRvcyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZGEgYXByZXNlbnRhw6fDo28uDQoNCkNBU08gTyBUUkFCQUxITyBERVBPU0lUQURPIFRFTkhBIFNJRE8gRklOQU5DSUFETyBPVSBBUE9JQURPIFBPUiBVTSDDk1JHw4NPLCBRVUUgTsODTyBBIElOU1RJVFVJw4fDg08gREVTVEUgUkVQT1NJVMOTUklPOiBWT0PDiiBERUNMQVJBIFRFUiBDVU1QUklETyBUT0RPUyBPUyBESVJFSVRPUyBERSBSRVZJU8ODTyBFIFFVQUlTUVVFUiBPVVRSQVMgT0JSSUdBw4fDlUVTIFJFUVVFUklEQVMgUEVMTyBDT05UUkFUTyBPVSBBQ09SRE8uIA0KDQpPIHJlcG9zaXTDs3JpbyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyBzZXUocykgbm9tZShzKSBjb21vIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkbyBkaXJlaXRvIGRlIGF1dG9yKGVzKSBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGUgZGVjbGFyYSBxdWUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4NCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2021-05-10T16:48:50Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Team formation problems: an integer linear optimization approach
dc.title.en.pt_BR.fl_str_mv Team formation problems: an integer linear optimization approach
title Team formation problems: an integer linear optimization approach
spellingShingle Team formation problems: an integer linear optimization approach
Figueiredo, Tatiane Fernandes
Team formation problem
Social balance
Branch & cut
Valid inequality
Reformulation linearization technique
title_short Team formation problems: an integer linear optimization approach
title_full Team formation problems: an integer linear optimization approach
title_fullStr Team formation problems: an integer linear optimization approach
title_full_unstemmed Team formation problems: an integer linear optimization approach
title_sort Team formation problems: an integer linear optimization approach
author Figueiredo, Tatiane Fernandes
author_facet Figueiredo, Tatiane Fernandes
author_role author
dc.contributor.author.fl_str_mv Figueiredo, Tatiane Fernandes
dc.contributor.advisor1.fl_str_mv Campêlo Neto, Manoel Bezerra
contributor_str_mv Campêlo Neto, Manoel Bezerra
dc.subject.por.fl_str_mv Team formation problem
Social balance
Branch & cut
Valid inequality
Reformulation linearization technique
topic Team formation problem
Social balance
Branch & cut
Valid inequality
Reformulation linearization technique
description Given a group of individuals, each one with a single skill, and a social network capturing the mutual affinity among them, the Team Formation Problem (TFP) aims to find a single team that meets the skills needed to perform a task while seeking to optimize the communication costs between the involved individuals. In the first part of this work, we study a generalized version of the TFP denominated as Multiple Team Formation Problem (MTFP), which allows distinct demands of workers per ability as well as multiple work teams and fractions of dedication time per team for each individual. In this case, the total communication cost is given by the sum of weighted pairwise relations between members within a same team. In the second part, we introduce a new variant of the TFP to be called Competitive Teams Formation Problem (CTFP). Using the theory of social balance, in this problem, we represent the social network that connects the involved individuals as a signed graph and consider both intra-team and inter-teams communication costs by asking to have only positive relationships between individuals of a same team and only negative relationships between individuals of different teams. For the MTFP, we propose an Integer Linear Programming (ILP) formulation and sets of valid inequalities. Computational experiments attest that the ILP model strengthened by valid inequalities consistently outperforms the existing quadratic formulation for MTFP. We also consider a generalized version of the MTFP where individuals may have multiple skills. To handle this version, we adapt the initial ILP model into two new models and present other valid inequalities. For the CTFP, we also propose an ILP formulation and valid inequalities derived from the structural balance theory that enhance the computational performance of the model. Finally, we close this work with general conclusions and directions for future works.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-05-10T16:48:50Z
dc.date.available.fl_str_mv 2021-05-10T16:48:50Z
dc.date.issued.fl_str_mv 2021
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv FIGUEIREDO, Tatiane Fernandes. Team formation problems: an integer linear optimization approach. 2021. 130 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2021.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/58283
identifier_str_mv FIGUEIREDO, Tatiane Fernandes. Team formation problems: an integer linear optimization approach. 2021. 130 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2021.
url http://www.repositorio.ufc.br/handle/riufc/58283
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/58283/3/2021_tese_tffigueiredo.pdf
http://repositorio.ufc.br/bitstream/riufc/58283/4/license.txt
bitstream.checksum.fl_str_mv 95e5515300b6de97c31848cc7bb8fae4
ce2f77d9db6511060b9277b356f86c2d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792845631520768