Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens

Bibliographic Details
Main Author: Rios, Nathalia Saraiva
Publication Date: 2019
Format: Doctoral thesis
Language: eng
Source: Repositório Institucional da Universidade Federal do Ceará (UFC)
dARK ID: ark:/83112/001300000zrtn
Download full: http://www.repositorio.ufc.br/handle/riufc/48256
Summary: In this study, lipase from Pseudomonas fluorescens (PFL) was immobilized and co-immobilized by different strategies, producing a biocatalyst library able to catalyze reactions of industrial interest in some operational conditions. Agarose and magnetic nanoparticles based supports were used as support for lipase immobilization and co-immobilization. In order to produce highly active biocatalysts, the strategy of immobilization in the open-form of lipase was maintained through adsorption on hydrophobic supports (Octyl-agarose and Octyl-nanoparticles), immobilization on heterofunctional supports containing hydrophobic groups (Glyoxyl-octyl-agarose) and covalent attachment on activated support in presence of surfactants (TEOS-nanoparticles). The strategies of co-immobilization were derived of some immobilization strategies: Multilayers of PFL were derived from the immobilization of PFL by interfacial adsorption on Octyl-agarose, which one layer of PFL is immobilized over the previous to multiply the final loading capacity of the support; PFL also was co-immobilized with other lipases (RML or LU) using the hererofunctional support (Glyoxyl-octyl-agarose) to reuse the more stable lipase (PFL) after inactivation, desorption and immobilization of the least stable lipase. These co-immobilized biocatalysts catalyze enzymatic cascade reactions or catalyze reactions involving heterogeneous substrates, such as modification of oils and fats. On the other hand, biocatalysts produced by immobilization on agarose-based supports generaly are applied to catalyze soluble substrates (which the substrate can easily penetrate into the pores of the support) and biocatalysts produced by immobilization on magnetic nanoparticles-based supports generaly are applied to catalyze insoluble or large substrates, which the enzyme is immobilized on the surface of the support, enabling the contact of the lipase with the substrate.
id UFC-7_c685742bf60f0f9c20287ed6ce6905d5
oai_identifier_str oai:repositorio.ufc.br:riufc/48256
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescensEngenharia químicaLipaseBiocatalisadoresImmobilizationPseudomonas fluorescensIn this study, lipase from Pseudomonas fluorescens (PFL) was immobilized and co-immobilized by different strategies, producing a biocatalyst library able to catalyze reactions of industrial interest in some operational conditions. Agarose and magnetic nanoparticles based supports were used as support for lipase immobilization and co-immobilization. In order to produce highly active biocatalysts, the strategy of immobilization in the open-form of lipase was maintained through adsorption on hydrophobic supports (Octyl-agarose and Octyl-nanoparticles), immobilization on heterofunctional supports containing hydrophobic groups (Glyoxyl-octyl-agarose) and covalent attachment on activated support in presence of surfactants (TEOS-nanoparticles). The strategies of co-immobilization were derived of some immobilization strategies: Multilayers of PFL were derived from the immobilization of PFL by interfacial adsorption on Octyl-agarose, which one layer of PFL is immobilized over the previous to multiply the final loading capacity of the support; PFL also was co-immobilized with other lipases (RML or LU) using the hererofunctional support (Glyoxyl-octyl-agarose) to reuse the more stable lipase (PFL) after inactivation, desorption and immobilization of the least stable lipase. These co-immobilized biocatalysts catalyze enzymatic cascade reactions or catalyze reactions involving heterogeneous substrates, such as modification of oils and fats. On the other hand, biocatalysts produced by immobilization on agarose-based supports generaly are applied to catalyze soluble substrates (which the substrate can easily penetrate into the pores of the support) and biocatalysts produced by immobilization on magnetic nanoparticles-based supports generaly are applied to catalyze insoluble or large substrates, which the enzyme is immobilized on the surface of the support, enabling the contact of the lipase with the substrate.Neste estudo, lipase de Pseudomonas fluorescens (PFL) foi imobilizada e co-imobilizada por diferentes estratégias, produzindo uma biblioteca de biocatalisadores capazes de catalisar reações de interesse industrial em diferentescondições operacionais. Os suportes baseados em agarose e nanopartículas magnéticas foram utilizados para a imobilização e co-imobilização de lipases. Para produzir biocatalisadores altamente ativos, a estratégia de imobilização da lipase na sua na forma aberta foi conduzida por adsorção em suportes hidrofóbicos (octil-agarose e octil-nanopartículas), imobilização em suportes heterofuncionais contendo grupos hidrofóbicos (glioxil-octil-agarose) e ligação covalente no suporte ativado na presença de surfactantes (TEOS-nanopartículas). As estratégias de co-imobilização foram derivadas de algumas estratégias de imobilização: multicamadas de PFL foram derivadas da imobilização de PFL por adsorção interfacial em octil-agarose, cuja camada de PFL é imobilizada sobre a anterior para multiplicar a capacidade de carga final do suporte; PFL também foi co-imobilizado com outras lipases (RML ou LU) usando suporte herofuncional (Glioxil-octil-agarose) para reutilizar a lipase mais estável (PFL) após inativação, dessorção e imobilização da lipase menos estável. Esses biocatalisadores co-imobilizados podem catalisar reações enzimáticas em cascata ou catalisar reações envolvendo substratos heterogêneos, como a modificação de óleos e gorduras. Por outro lado, biocatalisadores produzidos por imobilização em suportes à base de agarose geralmente são aplicados para catalisar substratos solúveis (na qual o substrato pode facilmente penetrar nos poros do suporte) e biocatalisadores produzidos por imobilização em suportes baseados em nanopartículas magnéticas geralmente são aplicados na catalise de substratos grandes ou insolúveis, no qual a enzima é imobilizada na superfície do suporte, permitindo o contato da lipase com o substrato.Gonçalves, Luciana Rocha BarrosFernández-Lafuente, RobertoRios, Nathalia Saraiva2019-12-09T13:50:23Z2019-12-09T13:50:23Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfRIOS, N. S. Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens. 2019. 239 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019.http://www.repositorio.ufc.br/handle/riufc/48256ark:/83112/001300000zrtnengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2020-09-15T18:57:52Zoai:repositorio.ufc.br:riufc/48256Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-09-15T18:57:52Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens
title Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens
spellingShingle Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens
Rios, Nathalia Saraiva
Engenharia química
Lipase
Biocatalisadores
Immobilization
Pseudomonas fluorescens
title_short Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens
title_full Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens
title_fullStr Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens
title_full_unstemmed Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens
title_sort Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens
author Rios, Nathalia Saraiva
author_facet Rios, Nathalia Saraiva
author_role author
dc.contributor.none.fl_str_mv Gonçalves, Luciana Rocha Barros
Fernández-Lafuente, Roberto
dc.contributor.author.fl_str_mv Rios, Nathalia Saraiva
dc.subject.por.fl_str_mv Engenharia química
Lipase
Biocatalisadores
Immobilization
Pseudomonas fluorescens
topic Engenharia química
Lipase
Biocatalisadores
Immobilization
Pseudomonas fluorescens
description In this study, lipase from Pseudomonas fluorescens (PFL) was immobilized and co-immobilized by different strategies, producing a biocatalyst library able to catalyze reactions of industrial interest in some operational conditions. Agarose and magnetic nanoparticles based supports were used as support for lipase immobilization and co-immobilization. In order to produce highly active biocatalysts, the strategy of immobilization in the open-form of lipase was maintained through adsorption on hydrophobic supports (Octyl-agarose and Octyl-nanoparticles), immobilization on heterofunctional supports containing hydrophobic groups (Glyoxyl-octyl-agarose) and covalent attachment on activated support in presence of surfactants (TEOS-nanoparticles). The strategies of co-immobilization were derived of some immobilization strategies: Multilayers of PFL were derived from the immobilization of PFL by interfacial adsorption on Octyl-agarose, which one layer of PFL is immobilized over the previous to multiply the final loading capacity of the support; PFL also was co-immobilized with other lipases (RML or LU) using the hererofunctional support (Glyoxyl-octyl-agarose) to reuse the more stable lipase (PFL) after inactivation, desorption and immobilization of the least stable lipase. These co-immobilized biocatalysts catalyze enzymatic cascade reactions or catalyze reactions involving heterogeneous substrates, such as modification of oils and fats. On the other hand, biocatalysts produced by immobilization on agarose-based supports generaly are applied to catalyze soluble substrates (which the substrate can easily penetrate into the pores of the support) and biocatalysts produced by immobilization on magnetic nanoparticles-based supports generaly are applied to catalyze insoluble or large substrates, which the enzyme is immobilized on the surface of the support, enabling the contact of the lipase with the substrate.
publishDate 2019
dc.date.none.fl_str_mv 2019-12-09T13:50:23Z
2019-12-09T13:50:23Z
2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv RIOS, N. S. Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens. 2019. 239 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019.
http://www.repositorio.ufc.br/handle/riufc/48256
dc.identifier.dark.fl_str_mv ark:/83112/001300000zrtn
identifier_str_mv RIOS, N. S. Development of strategies for the production of biocatalysts through immobilization / co-immobilization of lipase from Pseudomonas fluorescens. 2019. 239 f. Tese (Doutorado em Engenharia Química) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2019.
ark:/83112/001300000zrtn
url http://www.repositorio.ufc.br/handle/riufc/48256
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1834207607980556288