Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks
| Main Author: | |
|---|---|
| Publication Date: | 2018 |
| Other Authors: | , , , |
| Format: | Article |
| Language: | eng |
| Source: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
| Download full: | http://www.repositorio.ufc.br/handle/riufc/40986 |
Summary: | This work proposes hybrid models combining time-series models (using linear functions) and artificial intelligence (using a nonlinear function) that can be used to provide monthly mean wind speed predictions for the Brazilian northeast region. These might be useful for wind power generation; for example, they could acquire important information on how the local wind potential can be usable for a possible wind power plant through understanding future wind speed values. To create the proposed hybrid models, it was necessary to set the wind speed variable as a dependent variable of exogenous variables (i.e., pressure, temperature, and precipitation). Thus, it was possible to consider the meteorological characteristics of the study regions. It is possible to verify the hybrid models’ efficiency in providing perfect adjustments to the observed data. This statement is based on the low values found in the error statistical analysis, i.e., an error of approximately 5.0% and a Nash–Sutcliffe coefficient near to 0.96. These results were certainly important in predicting the wind speed time-series, which was similar to the observed wind speed time-series profile. Great similarities of maximums and minimums between the series were evident and showed the capacity of the models to represent the seasonality characteristics. |
| id |
UFC-7_c333f27950b0d53e56afc0f5e1bfd3ed |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/40986 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Camelo, Henrique do NascimentoLucio, Paulo SérgioLeal Junior, João Bosco VerçosaSantos, Daniel von Glehn dosCarvalho, Paulo Cesar Marques de2019-04-23T17:05:55Z2019-04-23T17:05:55Z2018CAMELO, H. do N. et. al. Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks. Atmosphere, v. 9, n. 2, p. 77-94, fev. 2018.2073-4433http://www.repositorio.ufc.br/handle/riufc/40986This work proposes hybrid models combining time-series models (using linear functions) and artificial intelligence (using a nonlinear function) that can be used to provide monthly mean wind speed predictions for the Brazilian northeast region. These might be useful for wind power generation; for example, they could acquire important information on how the local wind potential can be usable for a possible wind power plant through understanding future wind speed values. To create the proposed hybrid models, it was necessary to set the wind speed variable as a dependent variable of exogenous variables (i.e., pressure, temperature, and precipitation). Thus, it was possible to consider the meteorological characteristics of the study regions. It is possible to verify the hybrid models’ efficiency in providing perfect adjustments to the observed data. This statement is based on the low values found in the error statistical analysis, i.e., an error of approximately 5.0% and a Nash–Sutcliffe coefficient near to 0.96. These results were certainly important in predicting the wind speed time-series, which was similar to the observed wind speed time-series profile. Great similarities of maximums and minimums between the series were evident and showed the capacity of the models to represent the seasonality characteristics.AtmosphereEngenharia elétricaEnergia eólicaInteligência artificialSérie temporalWind powerArtificial intelligenceTime seriesForecastInnovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/40986/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2018_art_pcmcarvalho.pdf2018_art_pcmcarvalho.pdfapplication/pdf3030732http://repositorio.ufc.br/bitstream/riufc/40986/1/2018_art_pcmcarvalho.pdf70779005d5d8e4a97ce3688f24af4996MD51riufc/409862023-12-06 14:12:13.613oai:repositorio.ufc.br:riufc/40986Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-12-06T17:12:13Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks |
| title |
Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks |
| spellingShingle |
Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks Camelo, Henrique do Nascimento Engenharia elétrica Energia eólica Inteligência artificial Série temporal Wind power Artificial intelligence Time series Forecast |
| title_short |
Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks |
| title_full |
Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks |
| title_fullStr |
Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks |
| title_full_unstemmed |
Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks |
| title_sort |
Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks |
| author |
Camelo, Henrique do Nascimento |
| author_facet |
Camelo, Henrique do Nascimento Lucio, Paulo Sérgio Leal Junior, João Bosco Verçosa Santos, Daniel von Glehn dos Carvalho, Paulo Cesar Marques de |
| author_role |
author |
| author2 |
Lucio, Paulo Sérgio Leal Junior, João Bosco Verçosa Santos, Daniel von Glehn dos Carvalho, Paulo Cesar Marques de |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Camelo, Henrique do Nascimento Lucio, Paulo Sérgio Leal Junior, João Bosco Verçosa Santos, Daniel von Glehn dos Carvalho, Paulo Cesar Marques de |
| dc.subject.por.fl_str_mv |
Engenharia elétrica Energia eólica Inteligência artificial Série temporal Wind power Artificial intelligence Time series Forecast |
| topic |
Engenharia elétrica Energia eólica Inteligência artificial Série temporal Wind power Artificial intelligence Time series Forecast |
| description |
This work proposes hybrid models combining time-series models (using linear functions) and artificial intelligence (using a nonlinear function) that can be used to provide monthly mean wind speed predictions for the Brazilian northeast region. These might be useful for wind power generation; for example, they could acquire important information on how the local wind potential can be usable for a possible wind power plant through understanding future wind speed values. To create the proposed hybrid models, it was necessary to set the wind speed variable as a dependent variable of exogenous variables (i.e., pressure, temperature, and precipitation). Thus, it was possible to consider the meteorological characteristics of the study regions. It is possible to verify the hybrid models’ efficiency in providing perfect adjustments to the observed data. This statement is based on the low values found in the error statistical analysis, i.e., an error of approximately 5.0% and a Nash–Sutcliffe coefficient near to 0.96. These results were certainly important in predicting the wind speed time-series, which was similar to the observed wind speed time-series profile. Great similarities of maximums and minimums between the series were evident and showed the capacity of the models to represent the seasonality characteristics. |
| publishDate |
2018 |
| dc.date.issued.fl_str_mv |
2018 |
| dc.date.accessioned.fl_str_mv |
2019-04-23T17:05:55Z |
| dc.date.available.fl_str_mv |
2019-04-23T17:05:55Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
CAMELO, H. do N. et. al. Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks. Atmosphere, v. 9, n. 2, p. 77-94, fev. 2018. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/40986 |
| dc.identifier.issn.none.fl_str_mv |
2073-4433 |
| identifier_str_mv |
CAMELO, H. do N. et. al. Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks. Atmosphere, v. 9, n. 2, p. 77-94, fev. 2018. 2073-4433 |
| url |
http://www.repositorio.ufc.br/handle/riufc/40986 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Atmosphere |
| publisher.none.fl_str_mv |
Atmosphere |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/40986/2/license.txt http://repositorio.ufc.br/bitstream/riufc/40986/1/2018_art_pcmcarvalho.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 70779005d5d8e4a97ce3688f24af4996 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792774435307520 |