Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks

Bibliographic Details
Main Author: Camelo, Henrique do Nascimento
Publication Date: 2018
Other Authors: Lucio, Paulo Sérgio, Leal Junior, João Bosco Verçosa, Santos, Daniel von Glehn dos, Carvalho, Paulo Cesar Marques de
Format: Article
Language: eng
Source: Repositório Institucional da Universidade Federal do Ceará (UFC)
Download full: http://www.repositorio.ufc.br/handle/riufc/40986
Summary: This work proposes hybrid models combining time-series models (using linear functions) and artificial intelligence (using a nonlinear function) that can be used to provide monthly mean wind speed predictions for the Brazilian northeast region. These might be useful for wind power generation; for example, they could acquire important information on how the local wind potential can be usable for a possible wind power plant through understanding future wind speed values. To create the proposed hybrid models, it was necessary to set the wind speed variable as a dependent variable of exogenous variables (i.e., pressure, temperature, and precipitation). Thus, it was possible to consider the meteorological characteristics of the study regions. It is possible to verify the hybrid models’ efficiency in providing perfect adjustments to the observed data. This statement is based on the low values found in the error statistical analysis, i.e., an error of approximately 5.0% and a Nash–Sutcliffe coefficient near to 0.96. These results were certainly important in predicting the wind speed time-series, which was similar to the observed wind speed time-series profile. Great similarities of maximums and minimums between the series were evident and showed the capacity of the models to represent the seasonality characteristics.
id UFC-7_c333f27950b0d53e56afc0f5e1bfd3ed
oai_identifier_str oai:repositorio.ufc.br:riufc/40986
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Camelo, Henrique do NascimentoLucio, Paulo SérgioLeal Junior, João Bosco VerçosaSantos, Daniel von Glehn dosCarvalho, Paulo Cesar Marques de2019-04-23T17:05:55Z2019-04-23T17:05:55Z2018CAMELO, H. do N. et. al. Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks. Atmosphere, v. 9, n. 2, p. 77-94, fev. 2018.2073-4433http://www.repositorio.ufc.br/handle/riufc/40986This work proposes hybrid models combining time-series models (using linear functions) and artificial intelligence (using a nonlinear function) that can be used to provide monthly mean wind speed predictions for the Brazilian northeast region. These might be useful for wind power generation; for example, they could acquire important information on how the local wind potential can be usable for a possible wind power plant through understanding future wind speed values. To create the proposed hybrid models, it was necessary to set the wind speed variable as a dependent variable of exogenous variables (i.e., pressure, temperature, and precipitation). Thus, it was possible to consider the meteorological characteristics of the study regions. It is possible to verify the hybrid models’ efficiency in providing perfect adjustments to the observed data. This statement is based on the low values found in the error statistical analysis, i.e., an error of approximately 5.0% and a Nash–Sutcliffe coefficient near to 0.96. These results were certainly important in predicting the wind speed time-series, which was similar to the observed wind speed time-series profile. Great similarities of maximums and minimums between the series were evident and showed the capacity of the models to represent the seasonality characteristics.AtmosphereEngenharia elétricaEnergia eólicaInteligência artificialSérie temporalWind powerArtificial intelligenceTime seriesForecastInnovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/40986/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2018_art_pcmcarvalho.pdf2018_art_pcmcarvalho.pdfapplication/pdf3030732http://repositorio.ufc.br/bitstream/riufc/40986/1/2018_art_pcmcarvalho.pdf70779005d5d8e4a97ce3688f24af4996MD51riufc/409862023-12-06 14:12:13.613oai:repositorio.ufc.br:riufc/40986Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-12-06T17:12:13Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks
title Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks
spellingShingle Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks
Camelo, Henrique do Nascimento
Engenharia elétrica
Energia eólica
Inteligência artificial
Série temporal
Wind power
Artificial intelligence
Time series
Forecast
title_short Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks
title_full Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks
title_fullStr Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks
title_full_unstemmed Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks
title_sort Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks
author Camelo, Henrique do Nascimento
author_facet Camelo, Henrique do Nascimento
Lucio, Paulo Sérgio
Leal Junior, João Bosco Verçosa
Santos, Daniel von Glehn dos
Carvalho, Paulo Cesar Marques de
author_role author
author2 Lucio, Paulo Sérgio
Leal Junior, João Bosco Verçosa
Santos, Daniel von Glehn dos
Carvalho, Paulo Cesar Marques de
author2_role author
author
author
author
dc.contributor.author.fl_str_mv Camelo, Henrique do Nascimento
Lucio, Paulo Sérgio
Leal Junior, João Bosco Verçosa
Santos, Daniel von Glehn dos
Carvalho, Paulo Cesar Marques de
dc.subject.por.fl_str_mv Engenharia elétrica
Energia eólica
Inteligência artificial
Série temporal
Wind power
Artificial intelligence
Time series
Forecast
topic Engenharia elétrica
Energia eólica
Inteligência artificial
Série temporal
Wind power
Artificial intelligence
Time series
Forecast
description This work proposes hybrid models combining time-series models (using linear functions) and artificial intelligence (using a nonlinear function) that can be used to provide monthly mean wind speed predictions for the Brazilian northeast region. These might be useful for wind power generation; for example, they could acquire important information on how the local wind potential can be usable for a possible wind power plant through understanding future wind speed values. To create the proposed hybrid models, it was necessary to set the wind speed variable as a dependent variable of exogenous variables (i.e., pressure, temperature, and precipitation). Thus, it was possible to consider the meteorological characteristics of the study regions. It is possible to verify the hybrid models’ efficiency in providing perfect adjustments to the observed data. This statement is based on the low values found in the error statistical analysis, i.e., an error of approximately 5.0% and a Nash–Sutcliffe coefficient near to 0.96. These results were certainly important in predicting the wind speed time-series, which was similar to the observed wind speed time-series profile. Great similarities of maximums and minimums between the series were evident and showed the capacity of the models to represent the seasonality characteristics.
publishDate 2018
dc.date.issued.fl_str_mv 2018
dc.date.accessioned.fl_str_mv 2019-04-23T17:05:55Z
dc.date.available.fl_str_mv 2019-04-23T17:05:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv CAMELO, H. do N. et. al. Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks. Atmosphere, v. 9, n. 2, p. 77-94, fev. 2018.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/40986
dc.identifier.issn.none.fl_str_mv 2073-4433
identifier_str_mv CAMELO, H. do N. et. al. Innovative hybrid modeling of wind speed prediction involving time-series models and artificial neural networks. Atmosphere, v. 9, n. 2, p. 77-94, fev. 2018.
2073-4433
url http://www.repositorio.ufc.br/handle/riufc/40986
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Atmosphere
publisher.none.fl_str_mv Atmosphere
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/40986/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/40986/1/2018_art_pcmcarvalho.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
70779005d5d8e4a97ce3688f24af4996
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792774435307520