Export Ready — 

Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas

Bibliographic Details
Main Author: Lima, Marcello Anderson Ferreira Batista
Publication Date: 2019
Other Authors: Carvalho, Paulo Cesar Marques de, Braga, Arthur Plínio de Souza, Pereira, Renata Imaculada Soares, Jucá, Sandro César Silveira, Fernández Ramírez, Luis Miguel, Leite, Josileudo Rodrigues
Format: Article
Language: por
Source: Repositório Institucional da Universidade Federal do Ceará (UFC)
Download full: http://www.repositorio.ufc.br/handle/riufc/64556
Summary: Photovoltaic (PV) solar generation is gaining an increasing attention due to technological advances such as higher efficiency and life of PV cells and cost reduction. Due to its vast territory, Brazil is composed of regions that can explore renewable energy sources for electricity generation, and the solar resource is found satisfactorily in several areas of the country. This article presents a solar irradiance prediction mechanism developed using data collected in Fortaleza-CE, Brazil. Due to the fact of its characteristic of unpredictability for this resource, many researchers look for several methods to take the generation of this type of energy. The predictions were performed using a Radial Basis Function (RBF) a computational model based on the human nervous system, it is a technical and effective for time series forecasting, which is a relatively complex problem, Artificial Neural Network (ANN) with the advancement of 1 hour. In the ANN performance, a total of 34.4% forecasts underestimated solar energy availability, 7% of the forecasts obtained error 0 and 58.6% of forecasts overestimated the solar resource. A total of 62.33% of forecasts was between -10% and 10% of forecast error. The prediction mean error was 5.93% and the Mean Absolute Percentage Error (MAPE) was 11.43%.
id UFC-7_bf8ab2ab4fe941ef988c35e65d49b476
oai_identifier_str oai:repositorio.ufc.br:riufc/64556
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Lima, Marcello Anderson Ferreira BatistaCarvalho, Paulo Cesar Marques deBraga, Arthur Plínio de SouzaPereira, Renata Imaculada SoaresJucá, Sandro César SilveiraFernández Ramírez, Luis MiguelLeite, Josileudo Rodrigues2022-03-22T19:15:49Z2022-03-22T19:15:49Z2019LIMA, Marcello Anderson Ferreira Batista; CARVALHO, Paulo Cesar Marques de; BRAGA, Arthur Plínio de Souza; PEREIRA, Renata Imaculada Soares; JUCÁ, Sandro César Silveira; FERNÁNDEZ RAMÍREZ, Luis Miguel; LEITE, Josileudo Rodrigues. Radial basis function for solar irradiance forecasting in equatorial areas. In: INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY(ICREPQ'19), 17th., 10th to 12th April, 2019, Tenerife, Spain, 2019. Renewable Energy and Power Quality Journal (RE&PQJ), n.17, p.280-287, July 2019. REF: 288-19, DOI:10.24084/repqj17.2882172-038XDOI:10.24084/repqj17.288REF: 288-19http://www.repositorio.ufc.br/handle/riufc/64556Photovoltaic (PV) solar generation is gaining an increasing attention due to technological advances such as higher efficiency and life of PV cells and cost reduction. Due to its vast territory, Brazil is composed of regions that can explore renewable energy sources for electricity generation, and the solar resource is found satisfactorily in several areas of the country. This article presents a solar irradiance prediction mechanism developed using data collected in Fortaleza-CE, Brazil. Due to the fact of its characteristic of unpredictability for this resource, many researchers look for several methods to take the generation of this type of energy. The predictions were performed using a Radial Basis Function (RBF) a computational model based on the human nervous system, it is a technical and effective for time series forecasting, which is a relatively complex problem, Artificial Neural Network (ANN) with the advancement of 1 hour. In the ANN performance, a total of 34.4% forecasts underestimated solar energy availability, 7% of the forecasts obtained error 0 and 58.6% of forecasts overestimated the solar resource. A total of 62.33% of forecasts was between -10% and 10% of forecast error. The prediction mean error was 5.93% and the Mean Absolute Percentage Error (MAPE) was 11.43%.Solar forecastSolar energyArtificial neural networksRadial base functionRadial Basis Function for Solar Irradiance Forecasting in Equatorial AreasRadial Basis Function for Solar Irradiance Forecasting in Equatorial Areasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCORIGINAL2019_art_mafblima.pdf2019_art_mafblima.pdfapplication/pdf1766781http://repositorio.ufc.br/bitstream/riufc/64556/1/2019_art_mafblima.pdfa9d30f1739dceff4c200f1947b4323deMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82158http://repositorio.ufc.br/bitstream/riufc/64556/2/license.txte63c6ed4faa81e8b90d2fac75971a7d6MD52riufc/645562023-12-06 14:10:48.437oai:repositorio.ufc.br:riufc/64556TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIA0KDQpBbyBjb25jb3JkYXIgY29tIGVzdGEgbGljZW7Dp2EsIHZvY8OqKHMpIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgb2JyYSBhcXVpIGRlc2NyaXRhIGNvbmNlZGUobSkgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBkZXBvc2l0YWRvIGVtIGZvcm1hdG8gaW1wcmVzc28sIGVsZXRyw7RuaWNvIG91IGVtIHF1YWxxdWVyIG91dHJvIG1laW8uIFZvY8OqIGNvbmNvcmRhKG0pIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCBjb252ZXJ0ZXIgbyBhcnF1aXZvIGRlcG9zaXRhZG8gYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4gVm9jw6oocykgdGFtYsOpbSBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGVzdGUgZGVww7NzaXRvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUvb3UgcHJlc2VydmHDp8Ojby4gVm9jw6ogZGVjbGFyYSBxdWUgYSBhcHJlc2VudGHDp8OjbyBkbyBzZXUgdHJhYmFsaG8gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6oocykgcG9kZShtKSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhKG0pIHF1ZSBvIGVudmlvIMOpIGRlIHNldSBjb25oZWNpbWVudG8gZSBuw6NvIGluZnJpbmdlIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG91dHJhIHBlc3NvYSBvdSBpbnN0aXR1acOnw6NvLiBDYXNvIG8gZG9jdW1lbnRvIGEgc2VyIGRlcG9zaXRhZG8gY29udGVuaGEgbWF0ZXJpYWwgcGFyYSBvIHF1YWwgdm9jw6oocykgbsOjbyBkZXTDqW0gYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGRlIGF1dG9yYWlzLCB2b2PDqihzKSBkZWNsYXJhKG0pIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSBlIHF1ZSBvcyBtYXRlcmlhaXMgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zLCBlc3TDo28gZGV2aWRhbWVudGUgaWRlbnRpZmljYWRvcyBlIHJlY29uaGVjaWRvcyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZGEgYXByZXNlbnRhw6fDo28uDQogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gDQpPIHJlcG9zaXTDs3JpbyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyBzZXUocykgbm9tZShzKSBjb21vIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkbyBkaXJlaXRvIGRlIGF1dG9yKGVzKSBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGUgZGVjbGFyYSBxdWUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4NClJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQy4NCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-12-06T17:10:48Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas
dc.title.en.pt_BR.fl_str_mv Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas
title Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas
spellingShingle Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas
Lima, Marcello Anderson Ferreira Batista
Solar forecast
Solar energy
Artificial neural networks
Radial base function
title_short Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas
title_full Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas
title_fullStr Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas
title_full_unstemmed Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas
title_sort Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas
author Lima, Marcello Anderson Ferreira Batista
author_facet Lima, Marcello Anderson Ferreira Batista
Carvalho, Paulo Cesar Marques de
Braga, Arthur Plínio de Souza
Pereira, Renata Imaculada Soares
Jucá, Sandro César Silveira
Fernández Ramírez, Luis Miguel
Leite, Josileudo Rodrigues
author_role author
author2 Carvalho, Paulo Cesar Marques de
Braga, Arthur Plínio de Souza
Pereira, Renata Imaculada Soares
Jucá, Sandro César Silveira
Fernández Ramírez, Luis Miguel
Leite, Josileudo Rodrigues
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Lima, Marcello Anderson Ferreira Batista
Carvalho, Paulo Cesar Marques de
Braga, Arthur Plínio de Souza
Pereira, Renata Imaculada Soares
Jucá, Sandro César Silveira
Fernández Ramírez, Luis Miguel
Leite, Josileudo Rodrigues
dc.subject.por.fl_str_mv Solar forecast
Solar energy
Artificial neural networks
Radial base function
topic Solar forecast
Solar energy
Artificial neural networks
Radial base function
description Photovoltaic (PV) solar generation is gaining an increasing attention due to technological advances such as higher efficiency and life of PV cells and cost reduction. Due to its vast territory, Brazil is composed of regions that can explore renewable energy sources for electricity generation, and the solar resource is found satisfactorily in several areas of the country. This article presents a solar irradiance prediction mechanism developed using data collected in Fortaleza-CE, Brazil. Due to the fact of its characteristic of unpredictability for this resource, many researchers look for several methods to take the generation of this type of energy. The predictions were performed using a Radial Basis Function (RBF) a computational model based on the human nervous system, it is a technical and effective for time series forecasting, which is a relatively complex problem, Artificial Neural Network (ANN) with the advancement of 1 hour. In the ANN performance, a total of 34.4% forecasts underestimated solar energy availability, 7% of the forecasts obtained error 0 and 58.6% of forecasts overestimated the solar resource. A total of 62.33% of forecasts was between -10% and 10% of forecast error. The prediction mean error was 5.93% and the Mean Absolute Percentage Error (MAPE) was 11.43%.
publishDate 2019
dc.date.issued.fl_str_mv 2019
dc.date.accessioned.fl_str_mv 2022-03-22T19:15:49Z
dc.date.available.fl_str_mv 2022-03-22T19:15:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA, Marcello Anderson Ferreira Batista; CARVALHO, Paulo Cesar Marques de; BRAGA, Arthur Plínio de Souza; PEREIRA, Renata Imaculada Soares; JUCÁ, Sandro César Silveira; FERNÁNDEZ RAMÍREZ, Luis Miguel; LEITE, Josileudo Rodrigues. Radial basis function for solar irradiance forecasting in equatorial areas. In: INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY(ICREPQ'19), 17th., 10th to 12th April, 2019, Tenerife, Spain, 2019. Renewable Energy and Power Quality Journal (RE&PQJ), n.17, p.280-287, July 2019. REF: 288-19, DOI:10.24084/repqj17.288
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/64556
dc.identifier.issn.none.fl_str_mv 2172-038X
dc.identifier.other.none.fl_str_mv DOI:10.24084/repqj17.288
REF: 288-19
identifier_str_mv LIMA, Marcello Anderson Ferreira Batista; CARVALHO, Paulo Cesar Marques de; BRAGA, Arthur Plínio de Souza; PEREIRA, Renata Imaculada Soares; JUCÁ, Sandro César Silveira; FERNÁNDEZ RAMÍREZ, Luis Miguel; LEITE, Josileudo Rodrigues. Radial basis function for solar irradiance forecasting in equatorial areas. In: INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY(ICREPQ'19), 17th., 10th to 12th April, 2019, Tenerife, Spain, 2019. Renewable Energy and Power Quality Journal (RE&PQJ), n.17, p.280-287, July 2019. REF: 288-19, DOI:10.24084/repqj17.288
2172-038X
DOI:10.24084/repqj17.288
REF: 288-19
url http://www.repositorio.ufc.br/handle/riufc/64556
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/64556/1/2019_art_mafblima.pdf
http://repositorio.ufc.br/bitstream/riufc/64556/2/license.txt
bitstream.checksum.fl_str_mv a9d30f1739dceff4c200f1947b4323de
e63c6ed4faa81e8b90d2fac75971a7d6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792456890843136