Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas
| Main Author: | |
|---|---|
| Publication Date: | 2019 |
| Other Authors: | , , , , , |
| Format: | Article |
| Language: | por |
| Source: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
| Download full: | http://www.repositorio.ufc.br/handle/riufc/64556 |
Summary: | Photovoltaic (PV) solar generation is gaining an increasing attention due to technological advances such as higher efficiency and life of PV cells and cost reduction. Due to its vast territory, Brazil is composed of regions that can explore renewable energy sources for electricity generation, and the solar resource is found satisfactorily in several areas of the country. This article presents a solar irradiance prediction mechanism developed using data collected in Fortaleza-CE, Brazil. Due to the fact of its characteristic of unpredictability for this resource, many researchers look for several methods to take the generation of this type of energy. The predictions were performed using a Radial Basis Function (RBF) a computational model based on the human nervous system, it is a technical and effective for time series forecasting, which is a relatively complex problem, Artificial Neural Network (ANN) with the advancement of 1 hour. In the ANN performance, a total of 34.4% forecasts underestimated solar energy availability, 7% of the forecasts obtained error 0 and 58.6% of forecasts overestimated the solar resource. A total of 62.33% of forecasts was between -10% and 10% of forecast error. The prediction mean error was 5.93% and the Mean Absolute Percentage Error (MAPE) was 11.43%. |
| id |
UFC-7_bf8ab2ab4fe941ef988c35e65d49b476 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/64556 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Lima, Marcello Anderson Ferreira BatistaCarvalho, Paulo Cesar Marques deBraga, Arthur Plínio de SouzaPereira, Renata Imaculada SoaresJucá, Sandro César SilveiraFernández Ramírez, Luis MiguelLeite, Josileudo Rodrigues2022-03-22T19:15:49Z2022-03-22T19:15:49Z2019LIMA, Marcello Anderson Ferreira Batista; CARVALHO, Paulo Cesar Marques de; BRAGA, Arthur Plínio de Souza; PEREIRA, Renata Imaculada Soares; JUCÁ, Sandro César Silveira; FERNÁNDEZ RAMÍREZ, Luis Miguel; LEITE, Josileudo Rodrigues. Radial basis function for solar irradiance forecasting in equatorial areas. In: INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY(ICREPQ'19), 17th., 10th to 12th April, 2019, Tenerife, Spain, 2019. Renewable Energy and Power Quality Journal (RE&PQJ), n.17, p.280-287, July 2019. REF: 288-19, DOI:10.24084/repqj17.2882172-038XDOI:10.24084/repqj17.288REF: 288-19http://www.repositorio.ufc.br/handle/riufc/64556Photovoltaic (PV) solar generation is gaining an increasing attention due to technological advances such as higher efficiency and life of PV cells and cost reduction. Due to its vast territory, Brazil is composed of regions that can explore renewable energy sources for electricity generation, and the solar resource is found satisfactorily in several areas of the country. This article presents a solar irradiance prediction mechanism developed using data collected in Fortaleza-CE, Brazil. Due to the fact of its characteristic of unpredictability for this resource, many researchers look for several methods to take the generation of this type of energy. The predictions were performed using a Radial Basis Function (RBF) a computational model based on the human nervous system, it is a technical and effective for time series forecasting, which is a relatively complex problem, Artificial Neural Network (ANN) with the advancement of 1 hour. In the ANN performance, a total of 34.4% forecasts underestimated solar energy availability, 7% of the forecasts obtained error 0 and 58.6% of forecasts overestimated the solar resource. A total of 62.33% of forecasts was between -10% and 10% of forecast error. The prediction mean error was 5.93% and the Mean Absolute Percentage Error (MAPE) was 11.43%.Solar forecastSolar energyArtificial neural networksRadial base functionRadial Basis Function for Solar Irradiance Forecasting in Equatorial AreasRadial Basis Function for Solar Irradiance Forecasting in Equatorial Areasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCORIGINAL2019_art_mafblima.pdf2019_art_mafblima.pdfapplication/pdf1766781http://repositorio.ufc.br/bitstream/riufc/64556/1/2019_art_mafblima.pdfa9d30f1739dceff4c200f1947b4323deMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82158http://repositorio.ufc.br/bitstream/riufc/64556/2/license.txte63c6ed4faa81e8b90d2fac75971a7d6MD52riufc/645562023-12-06 14:10:48.437oai:repositorio.ufc.br:riufc/64556TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIA0KDQpBbyBjb25jb3JkYXIgY29tIGVzdGEgbGljZW7Dp2EsIHZvY8OqKHMpIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgb2JyYSBhcXVpIGRlc2NyaXRhIGNvbmNlZGUobSkgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBvIGRvY3VtZW50byBkZXBvc2l0YWRvIGVtIGZvcm1hdG8gaW1wcmVzc28sIGVsZXRyw7RuaWNvIG91IGVtIHF1YWxxdWVyIG91dHJvIG1laW8uIFZvY8OqIGNvbmNvcmRhKG0pIHF1ZSBhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCBjb252ZXJ0ZXIgbyBhcnF1aXZvIGRlcG9zaXRhZG8gYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gY29tIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4gVm9jw6oocykgdGFtYsOpbSBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgZGVzdGUgZGVww7NzaXRvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUvb3UgcHJlc2VydmHDp8Ojby4gVm9jw6ogZGVjbGFyYSBxdWUgYSBhcHJlc2VudGHDp8OjbyBkbyBzZXUgdHJhYmFsaG8gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6oocykgcG9kZShtKSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gVm9jw6ogdGFtYsOpbSBkZWNsYXJhKG0pIHF1ZSBvIGVudmlvIMOpIGRlIHNldSBjb25oZWNpbWVudG8gZSBuw6NvIGluZnJpbmdlIG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG91dHJhIHBlc3NvYSBvdSBpbnN0aXR1acOnw6NvLiBDYXNvIG8gZG9jdW1lbnRvIGEgc2VyIGRlcG9zaXRhZG8gY29udGVuaGEgbWF0ZXJpYWwgcGFyYSBvIHF1YWwgdm9jw6oocykgbsOjbyBkZXTDqW0gYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGRlIGF1dG9yYWlzLCB2b2PDqihzKSBkZWNsYXJhKG0pIHF1ZSBvYnRldmUgYSBwZXJtaXNzw6NvIGlycmVzdHJpdGEgZG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGUgY29uY2VkZXIgw6AgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgb3MgZGlyZWl0b3MgcmVxdWVyaWRvcyBwb3IgZXN0YSBsaWNlbsOnYSBlIHF1ZSBvcyBtYXRlcmlhaXMgZGUgcHJvcHJpZWRhZGUgZGUgdGVyY2Vpcm9zLCBlc3TDo28gZGV2aWRhbWVudGUgaWRlbnRpZmljYWRvcyBlIHJlY29uaGVjaWRvcyBubyB0ZXh0byBvdSBjb250ZcO6ZG8gZGEgYXByZXNlbnRhw6fDo28uDQogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gDQpPIHJlcG9zaXTDs3JpbyBpZGVudGlmaWNhcsOhIGNsYXJhbWVudGUgbyBzZXUocykgbm9tZShzKSBjb21vIGF1dG9yKGVzKSBvdSB0aXR1bGFyKGVzKSBkbyBkaXJlaXRvIGRlIGF1dG9yKGVzKSBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGUgZGVjbGFyYSBxdWUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbyBhbMOpbSBkYXMgcGVybWl0aWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4NClJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQy4NCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-12-06T17:10:48Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas |
| dc.title.en.pt_BR.fl_str_mv |
Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas |
| title |
Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas |
| spellingShingle |
Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas Lima, Marcello Anderson Ferreira Batista Solar forecast Solar energy Artificial neural networks Radial base function |
| title_short |
Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas |
| title_full |
Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas |
| title_fullStr |
Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas |
| title_full_unstemmed |
Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas |
| title_sort |
Radial Basis Function for Solar Irradiance Forecasting in Equatorial Areas |
| author |
Lima, Marcello Anderson Ferreira Batista |
| author_facet |
Lima, Marcello Anderson Ferreira Batista Carvalho, Paulo Cesar Marques de Braga, Arthur Plínio de Souza Pereira, Renata Imaculada Soares Jucá, Sandro César Silveira Fernández Ramírez, Luis Miguel Leite, Josileudo Rodrigues |
| author_role |
author |
| author2 |
Carvalho, Paulo Cesar Marques de Braga, Arthur Plínio de Souza Pereira, Renata Imaculada Soares Jucá, Sandro César Silveira Fernández Ramírez, Luis Miguel Leite, Josileudo Rodrigues |
| author2_role |
author author author author author author |
| dc.contributor.author.fl_str_mv |
Lima, Marcello Anderson Ferreira Batista Carvalho, Paulo Cesar Marques de Braga, Arthur Plínio de Souza Pereira, Renata Imaculada Soares Jucá, Sandro César Silveira Fernández Ramírez, Luis Miguel Leite, Josileudo Rodrigues |
| dc.subject.por.fl_str_mv |
Solar forecast Solar energy Artificial neural networks Radial base function |
| topic |
Solar forecast Solar energy Artificial neural networks Radial base function |
| description |
Photovoltaic (PV) solar generation is gaining an increasing attention due to technological advances such as higher efficiency and life of PV cells and cost reduction. Due to its vast territory, Brazil is composed of regions that can explore renewable energy sources for electricity generation, and the solar resource is found satisfactorily in several areas of the country. This article presents a solar irradiance prediction mechanism developed using data collected in Fortaleza-CE, Brazil. Due to the fact of its characteristic of unpredictability for this resource, many researchers look for several methods to take the generation of this type of energy. The predictions were performed using a Radial Basis Function (RBF) a computational model based on the human nervous system, it is a technical and effective for time series forecasting, which is a relatively complex problem, Artificial Neural Network (ANN) with the advancement of 1 hour. In the ANN performance, a total of 34.4% forecasts underestimated solar energy availability, 7% of the forecasts obtained error 0 and 58.6% of forecasts overestimated the solar resource. A total of 62.33% of forecasts was between -10% and 10% of forecast error. The prediction mean error was 5.93% and the Mean Absolute Percentage Error (MAPE) was 11.43%. |
| publishDate |
2019 |
| dc.date.issued.fl_str_mv |
2019 |
| dc.date.accessioned.fl_str_mv |
2022-03-22T19:15:49Z |
| dc.date.available.fl_str_mv |
2022-03-22T19:15:49Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
LIMA, Marcello Anderson Ferreira Batista; CARVALHO, Paulo Cesar Marques de; BRAGA, Arthur Plínio de Souza; PEREIRA, Renata Imaculada Soares; JUCÁ, Sandro César Silveira; FERNÁNDEZ RAMÍREZ, Luis Miguel; LEITE, Josileudo Rodrigues. Radial basis function for solar irradiance forecasting in equatorial areas. In: INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY(ICREPQ'19), 17th., 10th to 12th April, 2019, Tenerife, Spain, 2019. Renewable Energy and Power Quality Journal (RE&PQJ), n.17, p.280-287, July 2019. REF: 288-19, DOI:10.24084/repqj17.288 |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/64556 |
| dc.identifier.issn.none.fl_str_mv |
2172-038X |
| dc.identifier.other.none.fl_str_mv |
DOI:10.24084/repqj17.288 REF: 288-19 |
| identifier_str_mv |
LIMA, Marcello Anderson Ferreira Batista; CARVALHO, Paulo Cesar Marques de; BRAGA, Arthur Plínio de Souza; PEREIRA, Renata Imaculada Soares; JUCÁ, Sandro César Silveira; FERNÁNDEZ RAMÍREZ, Luis Miguel; LEITE, Josileudo Rodrigues. Radial basis function for solar irradiance forecasting in equatorial areas. In: INTERNATIONAL CONFERENCE ON RENEWABLE ENERGIES AND POWER QUALITY(ICREPQ'19), 17th., 10th to 12th April, 2019, Tenerife, Spain, 2019. Renewable Energy and Power Quality Journal (RE&PQJ), n.17, p.280-287, July 2019. REF: 288-19, DOI:10.24084/repqj17.288 2172-038X DOI:10.24084/repqj17.288 REF: 288-19 |
| url |
http://www.repositorio.ufc.br/handle/riufc/64556 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/64556/1/2019_art_mafblima.pdf http://repositorio.ufc.br/bitstream/riufc/64556/2/license.txt |
| bitstream.checksum.fl_str_mv |
a9d30f1739dceff4c200f1947b4323de e63c6ed4faa81e8b90d2fac75971a7d6 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792456890843136 |