Exportação concluída — 

The geodesic classification problem on graphs

Detalhes bibliográficos
Autor(a) principal: Araújo, Paulo Henrique Macêdo de
Data de Publicação: 2019
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
dARK ID: ark:/83112/00130000038gf
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/45051
Resumo: We define and study a discrete version of the classical classification problem in the Euclidean space. The problem is defined on a graph, where the unclassified vertices have to be classified taking into account the given classification of other vertices. The vertex partition into classes is grounded on the concept of geodesic convexity on graphs, as a replacement for the Euclidean convexity in the multidimensional space. We name such a problem the Geodesic Classification (GC) problem and consider two variants: 2-class single-group and 2-class multi-group. We propose integer programming based approaches for each considered version of the GC problem along with branch-and-cut algorithms to solve them exactly. We also carry out a polyhedral study of the associated polyhedra, which includes some families of facet-defining inequalities and separation algorithms. Facetness conditions for the single-group case are carried over to the multi-group case. We relate our findings with results from the literature concerning Euclidean classification. Finally, we run computational experiments to evaluate the computational efficiency and the classification accuracy of the proposed approaches by comparing them with some classic solution methods for the Euclidean convexity classification problem.
id UFC-7_ae9cd30411433a88baf61e88a774d6f9
oai_identifier_str oai:repositorio.ufc.br:riufc/45051
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling The geodesic classification problem on graphsThe geodesic classification problem on graphsClassificationGeodesic ConvexityPolyhedral CombinatoricsWe define and study a discrete version of the classical classification problem in the Euclidean space. The problem is defined on a graph, where the unclassified vertices have to be classified taking into account the given classification of other vertices. The vertex partition into classes is grounded on the concept of geodesic convexity on graphs, as a replacement for the Euclidean convexity in the multidimensional space. We name such a problem the Geodesic Classification (GC) problem and consider two variants: 2-class single-group and 2-class multi-group. We propose integer programming based approaches for each considered version of the GC problem along with branch-and-cut algorithms to solve them exactly. We also carry out a polyhedral study of the associated polyhedra, which includes some families of facet-defining inequalities and separation algorithms. Facetness conditions for the single-group case are carried over to the multi-group case. We relate our findings with results from the literature concerning Euclidean classification. Finally, we run computational experiments to evaluate the computational efficiency and the classification accuracy of the proposed approaches by comparing them with some classic solution methods for the Euclidean convexity classification problem.Definimos e estudamos uma versão discreta do clássico problema de classificação no espaço Euclidiano. O problema em questão é definido em um grafo, onde os vértices não classificados precisam ser classificados levando em consideração a classificação dada para outros vértices. A partição de vértices em classes é baseada no conceito de convexidade geodésica em grafos, como uma substituta da convexidade Euclidiana no espaço multidimensional. Chamamo-lo de Problema de Classificação Geodésica - CG (Geodesic Classification Problem, em inglês) e consideramos duas variantes: duas classes, único grupo e duas classes, multigrupo. Propomos abordagens baseadas em programação inteira para cada versão considerada do problema CG, assim como um algoritmo de branch-and-cut para resolvê-las exatamente. Fizemos também um estudo dos poliedros associados, o que inclue a determinação de algumas famílias de desigualdades que definem facetas e algoritmos de separação. Condições para definição de facetas para a versão único grupo foram traduzidas para a versão multigrupo. Relacionamos nossos resultados com alguns já conhecidos na literatura para a classificação Euclidiana. Finalmente, realizamos experimentos computacionais para avaliar a eficiência computacional e a acurácia da classificação das abordagens propostas, comparando-as com alguns métodos de resolução clássicos para o problema de classificação com convexidade Euclidiana.Campêlo Neto, Manoel BezerraCorrêa, Ricardo CordeiroAraújo, Paulo Henrique Macêdo de2019-08-22T21:30:17Z2019-08-22T21:30:17Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfARAÚJO, Paulo Henrique Macêdo de. The geodesic classification problem on graphs. 2019. 148 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2019.http://www.repositorio.ufc.br/handle/riufc/45051ark:/83112/00130000038gfengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccess2019-11-11T22:34:06Zoai:repositorio.ufc.br:riufc/45051Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2019-11-11T22:34:06Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.none.fl_str_mv The geodesic classification problem on graphs
The geodesic classification problem on graphs
title The geodesic classification problem on graphs
spellingShingle The geodesic classification problem on graphs
Araújo, Paulo Henrique Macêdo de
Classification
Geodesic Convexity
Polyhedral Combinatorics
title_short The geodesic classification problem on graphs
title_full The geodesic classification problem on graphs
title_fullStr The geodesic classification problem on graphs
title_full_unstemmed The geodesic classification problem on graphs
title_sort The geodesic classification problem on graphs
author Araújo, Paulo Henrique Macêdo de
author_facet Araújo, Paulo Henrique Macêdo de
author_role author
dc.contributor.none.fl_str_mv Campêlo Neto, Manoel Bezerra
Corrêa, Ricardo Cordeiro
dc.contributor.author.fl_str_mv Araújo, Paulo Henrique Macêdo de
dc.subject.por.fl_str_mv Classification
Geodesic Convexity
Polyhedral Combinatorics
topic Classification
Geodesic Convexity
Polyhedral Combinatorics
description We define and study a discrete version of the classical classification problem in the Euclidean space. The problem is defined on a graph, where the unclassified vertices have to be classified taking into account the given classification of other vertices. The vertex partition into classes is grounded on the concept of geodesic convexity on graphs, as a replacement for the Euclidean convexity in the multidimensional space. We name such a problem the Geodesic Classification (GC) problem and consider two variants: 2-class single-group and 2-class multi-group. We propose integer programming based approaches for each considered version of the GC problem along with branch-and-cut algorithms to solve them exactly. We also carry out a polyhedral study of the associated polyhedra, which includes some families of facet-defining inequalities and separation algorithms. Facetness conditions for the single-group case are carried over to the multi-group case. We relate our findings with results from the literature concerning Euclidean classification. Finally, we run computational experiments to evaluate the computational efficiency and the classification accuracy of the proposed approaches by comparing them with some classic solution methods for the Euclidean convexity classification problem.
publishDate 2019
dc.date.none.fl_str_mv 2019-08-22T21:30:17Z
2019-08-22T21:30:17Z
2019
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ARAÚJO, Paulo Henrique Macêdo de. The geodesic classification problem on graphs. 2019. 148 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2019.
http://www.repositorio.ufc.br/handle/riufc/45051
dc.identifier.dark.fl_str_mv ark:/83112/00130000038gf
identifier_str_mv ARAÚJO, Paulo Henrique Macêdo de. The geodesic classification problem on graphs. 2019. 148 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2019.
ark:/83112/00130000038gf
url http://www.repositorio.ufc.br/handle/riufc/45051
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1834207700609662976