A Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systems
| Main Author: | |
|---|---|
| Publication Date: | 2019 |
| Other Authors: | , , , |
| Format: | Conference object |
| Language: | por |
| Source: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
| Download full: | http://www.repositorio.ufc.br/handle/riufc/60409 |
Summary: | In this article, we study Radio Resource Allocation (RRA) as a non-convex optimization problem, aiming at maximizing the spectral efficiency subject to satisfaction guarantees in multiservice wireless systems. This problem has already been previously investigated and efficient heuristics have been proposed. However, in order to assess the performance of Machine Learning (ML) algorithms when solving optimization problems in the context of RRA, we revisit that problem and propose a solution based on a Reinforcement Learning (RL) framework. Specifically, our proposal is based on the Q-learning technique, where an agent gradually learns a policy by interacting with its local environment, until reaching convergence. Thus, in this article, the task of searching for an optimal solution in a combinatorial optimization problem is transformed into finding an optimal policy in Q-learning. Lastly, through computational simulations we compare the state-of-art proposals of the literature with our approach and we show a near optimal performance of the latter for a well-trained agent. |
| id |
UFC-7_a85eb42dda5c82fecd6a6bf30221423c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/60409 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Saraiva, Juno VitorinoMonteiro, Victor FariasLima, Francisco Rafael MarquesMaciel, Tarcísio FerreiraCavalcanti, Francisco Rodrigo Porto2021-09-13T13:55:19Z2021-09-13T13:55:19Z2019SARIAVA, Juno Vitorino; MONTEIRO, Victor Farias; LIMA, Francisco Rafael Marques; MACIEL, Tarcísio Ferreira; CAVALCANTI, Francisco Rodrigo Porto. A Q-learning based approach to spectral efficiency maximization in multiservice wireless systems. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT, XXXIII., 29 set.-02 out. 2019, Petrópolis-RJ., SP. Anais […], Petrópolis-RJ., SP., 2019.DOI: 10.14209/sbrt.2019.1570557029http://www.repositorio.ufc.br/handle/riufc/60409In this article, we study Radio Resource Allocation (RRA) as a non-convex optimization problem, aiming at maximizing the spectral efficiency subject to satisfaction guarantees in multiservice wireless systems. This problem has already been previously investigated and efficient heuristics have been proposed. However, in order to assess the performance of Machine Learning (ML) algorithms when solving optimization problems in the context of RRA, we revisit that problem and propose a solution based on a Reinforcement Learning (RL) framework. Specifically, our proposal is based on the Q-learning technique, where an agent gradually learns a policy by interacting with its local environment, until reaching convergence. Thus, in this article, the task of searching for an optimal solution in a combinatorial optimization problem is transformed into finding an optimal policy in Q-learning. Lastly, through computational simulations we compare the state-of-art proposals of the literature with our approach and we show a near optimal performance of the latter for a well-trained agent.https://www.sbrt.org.br/sbrt2019Radio resource allocationSatisfaction guaranteesMachine learningReinforcement learningQ-LearningA Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless SystemsA Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systemsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2019_eve_ jvsaraiva.pdf2019_eve_ jvsaraiva.pdfapplication/pdf464651http://repositorio.ufc.br/bitstream/riufc/60409/1/2019_eve_%20jvsaraiva.pdf68951860a5620b1e045152270c0c995eMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/60409/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52riufc/604092023-03-30 10:25:33.192oai:repositorio.ufc.br:riufc/60409Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2023-03-30T13:25:33Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
A Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systems |
| dc.title.en.pt_BR.fl_str_mv |
A Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systems |
| title |
A Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systems |
| spellingShingle |
A Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systems Saraiva, Juno Vitorino Radio resource allocation Satisfaction guarantees Machine learning Reinforcement learning Q-Learning |
| title_short |
A Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systems |
| title_full |
A Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systems |
| title_fullStr |
A Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systems |
| title_full_unstemmed |
A Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systems |
| title_sort |
A Q-learning Based Approach to Spectral Efficiency Maximization in Multiservice Wireless Systems |
| author |
Saraiva, Juno Vitorino |
| author_facet |
Saraiva, Juno Vitorino Monteiro, Victor Farias Lima, Francisco Rafael Marques Maciel, Tarcísio Ferreira Cavalcanti, Francisco Rodrigo Porto |
| author_role |
author |
| author2 |
Monteiro, Victor Farias Lima, Francisco Rafael Marques Maciel, Tarcísio Ferreira Cavalcanti, Francisco Rodrigo Porto |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Saraiva, Juno Vitorino Monteiro, Victor Farias Lima, Francisco Rafael Marques Maciel, Tarcísio Ferreira Cavalcanti, Francisco Rodrigo Porto |
| dc.subject.por.fl_str_mv |
Radio resource allocation Satisfaction guarantees Machine learning Reinforcement learning Q-Learning |
| topic |
Radio resource allocation Satisfaction guarantees Machine learning Reinforcement learning Q-Learning |
| description |
In this article, we study Radio Resource Allocation (RRA) as a non-convex optimization problem, aiming at maximizing the spectral efficiency subject to satisfaction guarantees in multiservice wireless systems. This problem has already been previously investigated and efficient heuristics have been proposed. However, in order to assess the performance of Machine Learning (ML) algorithms when solving optimization problems in the context of RRA, we revisit that problem and propose a solution based on a Reinforcement Learning (RL) framework. Specifically, our proposal is based on the Q-learning technique, where an agent gradually learns a policy by interacting with its local environment, until reaching convergence. Thus, in this article, the task of searching for an optimal solution in a combinatorial optimization problem is transformed into finding an optimal policy in Q-learning. Lastly, through computational simulations we compare the state-of-art proposals of the literature with our approach and we show a near optimal performance of the latter for a well-trained agent. |
| publishDate |
2019 |
| dc.date.issued.fl_str_mv |
2019 |
| dc.date.accessioned.fl_str_mv |
2021-09-13T13:55:19Z |
| dc.date.available.fl_str_mv |
2021-09-13T13:55:19Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
SARIAVA, Juno Vitorino; MONTEIRO, Victor Farias; LIMA, Francisco Rafael Marques; MACIEL, Tarcísio Ferreira; CAVALCANTI, Francisco Rodrigo Porto. A Q-learning based approach to spectral efficiency maximization in multiservice wireless systems. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT, XXXIII., 29 set.-02 out. 2019, Petrópolis-RJ., SP. Anais […], Petrópolis-RJ., SP., 2019. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/60409 |
| dc.identifier.other.none.fl_str_mv |
DOI: 10.14209/sbrt.2019.1570557029 |
| identifier_str_mv |
SARIAVA, Juno Vitorino; MONTEIRO, Victor Farias; LIMA, Francisco Rafael Marques; MACIEL, Tarcísio Ferreira; CAVALCANTI, Francisco Rodrigo Porto. A Q-learning based approach to spectral efficiency maximization in multiservice wireless systems. In: SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES - SBrT, XXXIII., 29 set.-02 out. 2019, Petrópolis-RJ., SP. Anais […], Petrópolis-RJ., SP., 2019. DOI: 10.14209/sbrt.2019.1570557029 |
| url |
http://www.repositorio.ufc.br/handle/riufc/60409 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
https://www.sbrt.org.br/sbrt2019 |
| publisher.none.fl_str_mv |
https://www.sbrt.org.br/sbrt2019 |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/60409/1/2019_eve_%20jvsaraiva.pdf http://repositorio.ufc.br/bitstream/riufc/60409/2/license.txt |
| bitstream.checksum.fl_str_mv |
68951860a5620b1e045152270c0c995e 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792859571290112 |