Export Ready — 

Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis

Bibliographic Details
Main Author: Matos, Filipe Fernandes dos Santos Brasil de
Publication Date: 2024
Format: Doctoral thesis
Language: por
Source: Repositório Institucional da Universidade Federal do Ceará (UFC)
Download full: http://repositorio.ufc.br/handle/riufc/77971
Summary: Low processing power and power limitations are typical constraints faced by most mobile devices when processing computational tasks. Several researches indicate computational offloading as a technique to face this challenge. In it, computationally and/or energetically limited devices transfer tasks to be executed on machines with greater capacity, saving time and resources. However, previous studies have demonstrated that adopting programming languages is inefficient when performing such tasks, and network latency impacts computational offloading performance levels. This thesis proposes the DADOS Architecture (Dew Architecture for Distribution of Offloading Servers), which attacks these two problems by incorporating the multi-language approach and the Dew Computing paradigm into computational offloading. When using the multi-language approach, DADOS allows interaction between processes developed in different languages, which enables the adoption of more efficient languages in offloading server processes, speeding up the execution of tasks and saving device resources. Furthermore, by using the Dew Computing paradigm, which reduces dependence on the network by allowing part of the remote services and data to be processed on the mobile device, DADOS allows bringing offloading processes into the device, mitigating adverse network effects. Experiments were conducted using real devices to validate the initial version of the architecture and evaluate the impact of the approach it offers on the execution of mobile tasks. The experiments evaluated the performance of three approaches (Local, Dew and Cloudlet) against three main metrics (response time, energy consumption, and efficiency) in two scenarios with different levels of overload on the network. The results were promising for the approach provided by DADOS, Dew. Comparing only the Dew and Local approaches, it was observed that the former was up to 7.2x faster and consumed up to 4.6x less energy than the latter in both scenarios. Between the Dew and Cloudlet approaches, Dew outperformed Cloudlet in specific conditions: when dealing with large volumes of data, Dew transmitted up to 2.6x less data. In environments with high network overhead, Dew processed tasks up to 4.5x faster than Cloudlet.
id UFC-7_97978776d49f08e6301b23718d7fdef4
oai_identifier_str oai:repositorio.ufc.br:riufc/77971
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Matos, Filipe Fernandes dos Santos Brasil deRego, Paulo Antonio LealTrinta, Fernando Antonio Mota2024-08-29T18:32:01Z2024-08-29T18:32:01Z2024MATOS, Filipe Fernandes dos Santos Brasil de. Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis. 2024. 154 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/77971Low processing power and power limitations are typical constraints faced by most mobile devices when processing computational tasks. Several researches indicate computational offloading as a technique to face this challenge. In it, computationally and/or energetically limited devices transfer tasks to be executed on machines with greater capacity, saving time and resources. However, previous studies have demonstrated that adopting programming languages is inefficient when performing such tasks, and network latency impacts computational offloading performance levels. This thesis proposes the DADOS Architecture (Dew Architecture for Distribution of Offloading Servers), which attacks these two problems by incorporating the multi-language approach and the Dew Computing paradigm into computational offloading. When using the multi-language approach, DADOS allows interaction between processes developed in different languages, which enables the adoption of more efficient languages in offloading server processes, speeding up the execution of tasks and saving device resources. Furthermore, by using the Dew Computing paradigm, which reduces dependence on the network by allowing part of the remote services and data to be processed on the mobile device, DADOS allows bringing offloading processes into the device, mitigating adverse network effects. Experiments were conducted using real devices to validate the initial version of the architecture and evaluate the impact of the approach it offers on the execution of mobile tasks. The experiments evaluated the performance of three approaches (Local, Dew and Cloudlet) against three main metrics (response time, energy consumption, and efficiency) in two scenarios with different levels of overload on the network. The results were promising for the approach provided by DADOS, Dew. Comparing only the Dew and Local approaches, it was observed that the former was up to 7.2x faster and consumed up to 4.6x less energy than the latter in both scenarios. Between the Dew and Cloudlet approaches, Dew outperformed Cloudlet in specific conditions: when dealing with large volumes of data, Dew transmitted up to 2.6x less data. In environments with high network overhead, Dew processed tasks up to 4.5x faster than Cloudlet.Baixa capacidade de processamento e limitações de energia são restrições comuns enfrentadas pela maioria dos dispositivos móveis ao processar tarefas computacionais. Diversas pesquisas indicam o offloading computacional como uma técnica para enfrentar esse desafio. Nela, dispositivos computacionalmente e/ou energeticamente limitados transferem tarefas para serem executadas em máquinas com maior capacidade, poupando tempo e recursos. Contudo, estudos anteriores mostraram que a adoção de linguagens de programação ineficientes ao executar tais tarefas e a latência da rede impactam negativamente no desempenho do offloading computacional. Esta tese propõe a Arquitetura DADOS (Dew Architecture for Distribution of Offloading Servers), que ataca esses dois problemas incorporando a abordagem multi-linguagem e o paradigma Dew Computing ao offloading computacional. A DADOS ao utilizar a abordagem multi-linguagem, permite a interação entre processos desenvolvidos em diferentes linguagens, o que possibilita a adoção de linguagens mais eficientes nos processos servidores de offloading, acelerando a execução de tarefas e economizando recursos do dispositivo. Além disso, ao usar o paradigma Dew Computing, que reduz a dependência da rede ao permitir que parte dos serviços e dados remotos sejam processados no dispositivo móvel, a DADOS permite trazer os processos de offloading para dentro do dispositivo, mitigando os efeitos negativos da rede. Foram conduzidos experimentos, utilizando dispositivos reais, com o objetivo de validar a versão inicial da arquitetura e avaliar o impacto da abordagem oferecida por ela na execução de tarefas móveis. Os experimentos avaliaram o desempenho de três abordagens (Local, Dew e Cloudlet) em relação a três métricas principais (tempo de resposta, consumo de energia e eficiência) em dois cenários com diferentes níveis de sobrecarga na rede. Os resultados foram promissores para a abordagem proporcionada pela DADOS, a Dew. Comparando apenas as abordagens Dew e Local, observou-se que a primeira foi até 7.2x mais rápida e consumiu até 4.6x menos energia que a última em ambos os cenários. Já entre as abordagens Dew e Cloudlet, a Dew superou a Cloudlet em condições específicas: ao lidar com grandes volumes de dados, a Dew transmitiu até 2.6x menos dados. Em ambientes com alta sobrecarga na rede, a Dew processou tarefas até 4.5x mais rapidamente que a Cloudlet.Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveisAn architecture based on Dew Computing and Multi-language Processing to improve computational performance of mobile applicationsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisComputação em OrvalhoMulti-LinguagemOffloadingComputação MóvelMECDew ComputingMulti-LanguageOffloadingMobile ComputingMECCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFChttp://lattes.cnpq.br/8629788499493675http://lattes.cnpq.br/8908026219336623http://lattes.cnpq.br/66312671108940802024-08-29LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/77971/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL2024_tese_ffsbmatos.pdf2024_tese_ffsbmatos.pdfapplication/pdf3245483http://repositorio.ufc.br/bitstream/riufc/77971/3/2024_tese_ffsbmatos.pdfba0fe20d02e8b8b7bccfcaf4e5f05740MD53riufc/779712024-08-29 15:32:04.068oai:repositorio.ufc.br:riufc/77971Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-08-29T18:32:04Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis
dc.title.en.pt_BR.fl_str_mv An architecture based on Dew Computing and Multi-language Processing to improve computational performance of mobile applications
title Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis
spellingShingle Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis
Matos, Filipe Fernandes dos Santos Brasil de
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Computação em Orvalho
Multi-Linguagem
Offloading
Computação Móvel
MEC
Dew Computing
Multi-Language
Offloading
Mobile Computing
MEC
title_short Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis
title_full Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis
title_fullStr Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis
title_full_unstemmed Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis
title_sort Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis
author Matos, Filipe Fernandes dos Santos Brasil de
author_facet Matos, Filipe Fernandes dos Santos Brasil de
author_role author
dc.contributor.co-advisor.none.fl_str_mv Rego, Paulo Antonio Leal
dc.contributor.author.fl_str_mv Matos, Filipe Fernandes dos Santos Brasil de
dc.contributor.advisor1.fl_str_mv Trinta, Fernando Antonio Mota
contributor_str_mv Trinta, Fernando Antonio Mota
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
Computação em Orvalho
Multi-Linguagem
Offloading
Computação Móvel
MEC
Dew Computing
Multi-Language
Offloading
Mobile Computing
MEC
dc.subject.ptbr.pt_BR.fl_str_mv Computação em Orvalho
Multi-Linguagem
Offloading
Computação Móvel
MEC
dc.subject.en.pt_BR.fl_str_mv Dew Computing
Multi-Language
Offloading
Mobile Computing
MEC
description Low processing power and power limitations are typical constraints faced by most mobile devices when processing computational tasks. Several researches indicate computational offloading as a technique to face this challenge. In it, computationally and/or energetically limited devices transfer tasks to be executed on machines with greater capacity, saving time and resources. However, previous studies have demonstrated that adopting programming languages is inefficient when performing such tasks, and network latency impacts computational offloading performance levels. This thesis proposes the DADOS Architecture (Dew Architecture for Distribution of Offloading Servers), which attacks these two problems by incorporating the multi-language approach and the Dew Computing paradigm into computational offloading. When using the multi-language approach, DADOS allows interaction between processes developed in different languages, which enables the adoption of more efficient languages in offloading server processes, speeding up the execution of tasks and saving device resources. Furthermore, by using the Dew Computing paradigm, which reduces dependence on the network by allowing part of the remote services and data to be processed on the mobile device, DADOS allows bringing offloading processes into the device, mitigating adverse network effects. Experiments were conducted using real devices to validate the initial version of the architecture and evaluate the impact of the approach it offers on the execution of mobile tasks. The experiments evaluated the performance of three approaches (Local, Dew and Cloudlet) against three main metrics (response time, energy consumption, and efficiency) in two scenarios with different levels of overload on the network. The results were promising for the approach provided by DADOS, Dew. Comparing only the Dew and Local approaches, it was observed that the former was up to 7.2x faster and consumed up to 4.6x less energy than the latter in both scenarios. Between the Dew and Cloudlet approaches, Dew outperformed Cloudlet in specific conditions: when dealing with large volumes of data, Dew transmitted up to 2.6x less data. In environments with high network overhead, Dew processed tasks up to 4.5x faster than Cloudlet.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-08-29T18:32:01Z
dc.date.available.fl_str_mv 2024-08-29T18:32:01Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MATOS, Filipe Fernandes dos Santos Brasil de. Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis. 2024. 154 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/77971
identifier_str_mv MATOS, Filipe Fernandes dos Santos Brasil de. Uma arquitetura baseada em Dew Computing e em Processamento Multi-linguagem para melhoria do desempenho computacional de aplicações móveis. 2024. 154 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2024.
url http://repositorio.ufc.br/handle/riufc/77971
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/77971/4/license.txt
http://repositorio.ufc.br/bitstream/riufc/77971/3/2024_tese_ffsbmatos.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
ba0fe20d02e8b8b7bccfcaf4e5f05740
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792166961676288