Export Ready — 

Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global

Bibliographic Details
Main Author: Lima Neto, Eliezer Barbosa
Publication Date: 2024
Format: Bachelor thesis
Language: por
Source: Repositório Institucional da Universidade Federal do Ceará (UFC)
Download full: http://repositorio.ufc.br/handle/riufc/78686
Summary: In this work we will use the Minimum Spanning Tree (MST) using Correlation Distance to study the relationships between the main global stocks in the period from 2018 to 2024. The Correlation Distance matrix is given by d(i,j) = √2(1−r(i, j)), where r(i,j) is the surface coefficient between the vertices xi and x j. The brightness coefficient varies between -1, perfect anti-transparency, and +1, perfect transparency, and r(ij) = 0, meaning uncorrelated, or independent, variables. Correlation of a variable with itself is always equal to +1, r(i, i) = 1. Thus, d(i,j) varies between 0 for r(i,j)= +1, and 2 for r(ij,j) = -1. Using the distance matrix, we calculate the MST, the network that connects all variables, without cycles, with the shortest distance. To do this, we will use the PRIM algorithm, which searches for the closest vertex to any element of the network already found. We can show the MST through graphs, or reorder the expansion matrix in the order of the MST. With this, we visualize the clusters formed by proximity of variables. We use financial market data composed of the main stock indexes of the countries obtained from the ’Yahoo Finance’ database for the period 2018 - 2024, which included the years 2020-2022 with pandemic and lockdown, allowing a comparison with the years 2018-2019 to understand the economic effects of the lockdown. On the other hand, in the period 2022 and 2023, the Ukraine-Russia war took place, with strong impacts on energy and food prices, and, consequently, on the stock values of several companies.
id UFC-7_9486cc3f46e0bbb6a1e9016d25f20bbc
oai_identifier_str oai:repositorio.ufc.br:riufc/78686
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Lima Neto, Eliezer BarbosaCesar, Carlos Lenz2024-10-30T14:08:41Z2024-10-30T14:08:41Z2024LIMA NETO, E. B. Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global. 2024. 75 f. Monografia (Bacharelado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/78686In this work we will use the Minimum Spanning Tree (MST) using Correlation Distance to study the relationships between the main global stocks in the period from 2018 to 2024. The Correlation Distance matrix is given by d(i,j) = √2(1−r(i, j)), where r(i,j) is the surface coefficient between the vertices xi and x j. The brightness coefficient varies between -1, perfect anti-transparency, and +1, perfect transparency, and r(ij) = 0, meaning uncorrelated, or independent, variables. Correlation of a variable with itself is always equal to +1, r(i, i) = 1. Thus, d(i,j) varies between 0 for r(i,j)= +1, and 2 for r(ij,j) = -1. Using the distance matrix, we calculate the MST, the network that connects all variables, without cycles, with the shortest distance. To do this, we will use the PRIM algorithm, which searches for the closest vertex to any element of the network already found. We can show the MST through graphs, or reorder the expansion matrix in the order of the MST. With this, we visualize the clusters formed by proximity of variables. We use financial market data composed of the main stock indexes of the countries obtained from the ’Yahoo Finance’ database for the period 2018 - 2024, which included the years 2020-2022 with pandemic and lockdown, allowing a comparison with the years 2018-2019 to understand the economic effects of the lockdown. On the other hand, in the period 2022 and 2023, the Ukraine-Russia war took place, with strong impacts on energy and food prices, and, consequently, on the stock values of several companies.Neste trabalho utilizaremos a ’Minimum Spanning Tree’ (MST) usando Distância de Correlação para estudar as relações entre as principais ações globais no período de 2018 a 2024. A matriz Distância de Correlação é dada por d(i,j) = √2(1−r(i, j)), onde r(i,j) é o coeficiente de correlação entre as vértices xi e x j. O coeficiente de correlação varia entre -1, anti correlação perfeita, e +1, correlação perfeita, e r(ij) = 0, significa variáveis descorrelacionadas, ou independentes. Correlação de uma variável consigo mesma é sempre igual à +1, r(i, i) = 1. Dessa forma, d(i,j) varia entre 0 para r(i,j)= +1, e 2 para r(i,j) = -1. Com a matriz de distâncias calculamos a MST, a rede que conecta todas as variáveis, sem ciclos, com a menor distância. Para isso usaremos o algoritmo de PRIM, que procura o vértice mais próximo de qualquer elemento da rede já encontrada. Podemos mostrar a MST através de grafos, ou reordenar a matriz de correlação pela ordem do MST. Com isso, visualizamos os ’clusters’ formados por proximidade de variáveis. Utilizamos os dados do mercado financeiro composto por os principais índices de ações dos países obtidos do banco de dados da ’Yahoo Finance’ no período 2018 – 2024, que incluiu os anos de 2020-2022 com pandemia e lockdown, permitindo uma comparação com os anos de 2018-2019 para entender os efeitos econômicos do lockdown. Por outro lado, no período de 2022 e 2023 aconteceu a guerra Ucrânia-Rússia, com fortes impactos nos preços de energia e alimentos, e, consequentemente, nos valores das ações de várias empresas.Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade globalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisMinimum spanning treeLockdownGuerra na UcrâniaMinimum spanning treeLockdownWar in Ukraineinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/78686/6/license.txt8a4605be74aa9ea9d79846c1fba20a33MD56ORIGINAL2024_tcc_eblimaneto.pdf2024_tcc_eblimaneto.pdfapplication/pdf9808484http://repositorio.ufc.br/bitstream/riufc/78686/5/2024_tcc_eblimaneto.pdf678a20bedb4ba68c4aec918eae3c75c1MD55riufc/786862024-10-30 11:08:42.925oai:repositorio.ufc.br:riufc/78686Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-10-30T14:08:42Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global
title Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global
spellingShingle Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global
Lima Neto, Eliezer Barbosa
Minimum spanning tree
Lockdown
Guerra na Ucrânia
Minimum spanning tree
Lockdown
War in Ukraine
title_short Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global
title_full Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global
title_fullStr Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global
title_full_unstemmed Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global
title_sort Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global
author Lima Neto, Eliezer Barbosa
author_facet Lima Neto, Eliezer Barbosa
author_role author
dc.contributor.author.fl_str_mv Lima Neto, Eliezer Barbosa
dc.contributor.advisor1.fl_str_mv Cesar, Carlos Lenz
contributor_str_mv Cesar, Carlos Lenz
dc.subject.ptbr.pt_BR.fl_str_mv Minimum spanning tree
Lockdown
Guerra na Ucrânia
topic Minimum spanning tree
Lockdown
Guerra na Ucrânia
Minimum spanning tree
Lockdown
War in Ukraine
dc.subject.en.pt_BR.fl_str_mv Minimum spanning tree
Lockdown
War in Ukraine
description In this work we will use the Minimum Spanning Tree (MST) using Correlation Distance to study the relationships between the main global stocks in the period from 2018 to 2024. The Correlation Distance matrix is given by d(i,j) = √2(1−r(i, j)), where r(i,j) is the surface coefficient between the vertices xi and x j. The brightness coefficient varies between -1, perfect anti-transparency, and +1, perfect transparency, and r(ij) = 0, meaning uncorrelated, or independent, variables. Correlation of a variable with itself is always equal to +1, r(i, i) = 1. Thus, d(i,j) varies between 0 for r(i,j)= +1, and 2 for r(ij,j) = -1. Using the distance matrix, we calculate the MST, the network that connects all variables, without cycles, with the shortest distance. To do this, we will use the PRIM algorithm, which searches for the closest vertex to any element of the network already found. We can show the MST through graphs, or reorder the expansion matrix in the order of the MST. With this, we visualize the clusters formed by proximity of variables. We use financial market data composed of the main stock indexes of the countries obtained from the ’Yahoo Finance’ database for the period 2018 - 2024, which included the years 2020-2022 with pandemic and lockdown, allowing a comparison with the years 2018-2019 to understand the economic effects of the lockdown. On the other hand, in the period 2022 and 2023, the Ukraine-Russia war took place, with strong impacts on energy and food prices, and, consequently, on the stock values of several companies.
publishDate 2024
dc.date.accessioned.fl_str_mv 2024-10-30T14:08:41Z
dc.date.available.fl_str_mv 2024-10-30T14:08:41Z
dc.date.issued.fl_str_mv 2024
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv LIMA NETO, E. B. Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global. 2024. 75 f. Monografia (Bacharelado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2024.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/78686
identifier_str_mv LIMA NETO, E. B. Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global. 2024. 75 f. Monografia (Bacharelado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2024.
url http://repositorio.ufc.br/handle/riufc/78686
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/78686/6/license.txt
http://repositorio.ufc.br/bitstream/riufc/78686/5/2024_tcc_eblimaneto.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
678a20bedb4ba68c4aec918eae3c75c1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792768520290304