Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Format: | Bachelor thesis |
| Language: | por |
| Source: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
| Download full: | http://repositorio.ufc.br/handle/riufc/78686 |
Summary: | In this work we will use the Minimum Spanning Tree (MST) using Correlation Distance to study the relationships between the main global stocks in the period from 2018 to 2024. The Correlation Distance matrix is given by d(i,j) = √2(1−r(i, j)), where r(i,j) is the surface coefficient between the vertices xi and x j. The brightness coefficient varies between -1, perfect anti-transparency, and +1, perfect transparency, and r(ij) = 0, meaning uncorrelated, or independent, variables. Correlation of a variable with itself is always equal to +1, r(i, i) = 1. Thus, d(i,j) varies between 0 for r(i,j)= +1, and 2 for r(ij,j) = -1. Using the distance matrix, we calculate the MST, the network that connects all variables, without cycles, with the shortest distance. To do this, we will use the PRIM algorithm, which searches for the closest vertex to any element of the network already found. We can show the MST through graphs, or reorder the expansion matrix in the order of the MST. With this, we visualize the clusters formed by proximity of variables. We use financial market data composed of the main stock indexes of the countries obtained from the ’Yahoo Finance’ database for the period 2018 - 2024, which included the years 2020-2022 with pandemic and lockdown, allowing a comparison with the years 2018-2019 to understand the economic effects of the lockdown. On the other hand, in the period 2022 and 2023, the Ukraine-Russia war took place, with strong impacts on energy and food prices, and, consequently, on the stock values of several companies. |
| id |
UFC-7_9486cc3f46e0bbb6a1e9016d25f20bbc |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/78686 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Lima Neto, Eliezer BarbosaCesar, Carlos Lenz2024-10-30T14:08:41Z2024-10-30T14:08:41Z2024LIMA NETO, E. B. Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global. 2024. 75 f. Monografia (Bacharelado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2024.http://repositorio.ufc.br/handle/riufc/78686In this work we will use the Minimum Spanning Tree (MST) using Correlation Distance to study the relationships between the main global stocks in the period from 2018 to 2024. The Correlation Distance matrix is given by d(i,j) = √2(1−r(i, j)), where r(i,j) is the surface coefficient between the vertices xi and x j. The brightness coefficient varies between -1, perfect anti-transparency, and +1, perfect transparency, and r(ij) = 0, meaning uncorrelated, or independent, variables. Correlation of a variable with itself is always equal to +1, r(i, i) = 1. Thus, d(i,j) varies between 0 for r(i,j)= +1, and 2 for r(ij,j) = -1. Using the distance matrix, we calculate the MST, the network that connects all variables, without cycles, with the shortest distance. To do this, we will use the PRIM algorithm, which searches for the closest vertex to any element of the network already found. We can show the MST through graphs, or reorder the expansion matrix in the order of the MST. With this, we visualize the clusters formed by proximity of variables. We use financial market data composed of the main stock indexes of the countries obtained from the ’Yahoo Finance’ database for the period 2018 - 2024, which included the years 2020-2022 with pandemic and lockdown, allowing a comparison with the years 2018-2019 to understand the economic effects of the lockdown. On the other hand, in the period 2022 and 2023, the Ukraine-Russia war took place, with strong impacts on energy and food prices, and, consequently, on the stock values of several companies.Neste trabalho utilizaremos a ’Minimum Spanning Tree’ (MST) usando Distância de Correlação para estudar as relações entre as principais ações globais no período de 2018 a 2024. A matriz Distância de Correlação é dada por d(i,j) = √2(1−r(i, j)), onde r(i,j) é o coeficiente de correlação entre as vértices xi e x j. O coeficiente de correlação varia entre -1, anti correlação perfeita, e +1, correlação perfeita, e r(ij) = 0, significa variáveis descorrelacionadas, ou independentes. Correlação de uma variável consigo mesma é sempre igual à +1, r(i, i) = 1. Dessa forma, d(i,j) varia entre 0 para r(i,j)= +1, e 2 para r(i,j) = -1. Com a matriz de distâncias calculamos a MST, a rede que conecta todas as variáveis, sem ciclos, com a menor distância. Para isso usaremos o algoritmo de PRIM, que procura o vértice mais próximo de qualquer elemento da rede já encontrada. Podemos mostrar a MST através de grafos, ou reordenar a matriz de correlação pela ordem do MST. Com isso, visualizamos os ’clusters’ formados por proximidade de variáveis. Utilizamos os dados do mercado financeiro composto por os principais índices de ações dos países obtidos do banco de dados da ’Yahoo Finance’ no período 2018 – 2024, que incluiu os anos de 2020-2022 com pandemia e lockdown, permitindo uma comparação com os anos de 2018-2019 para entender os efeitos econômicos do lockdown. Por outro lado, no período de 2022 e 2023 aconteceu a guerra Ucrânia-Rússia, com fortes impactos nos preços de energia e alimentos, e, consequentemente, nos valores das ações de várias empresas.Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade globalinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisMinimum spanning treeLockdownGuerra na UcrâniaMinimum spanning treeLockdownWar in Ukraineinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/78686/6/license.txt8a4605be74aa9ea9d79846c1fba20a33MD56ORIGINAL2024_tcc_eblimaneto.pdf2024_tcc_eblimaneto.pdfapplication/pdf9808484http://repositorio.ufc.br/bitstream/riufc/78686/5/2024_tcc_eblimaneto.pdf678a20bedb4ba68c4aec918eae3c75c1MD55riufc/786862024-10-30 11:08:42.925oai:repositorio.ufc.br:riufc/78686Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2024-10-30T14:08:42Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global |
| title |
Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global |
| spellingShingle |
Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global Lima Neto, Eliezer Barbosa Minimum spanning tree Lockdown Guerra na Ucrânia Minimum spanning tree Lockdown War in Ukraine |
| title_short |
Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global |
| title_full |
Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global |
| title_fullStr |
Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global |
| title_full_unstemmed |
Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global |
| title_sort |
Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global |
| author |
Lima Neto, Eliezer Barbosa |
| author_facet |
Lima Neto, Eliezer Barbosa |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Lima Neto, Eliezer Barbosa |
| dc.contributor.advisor1.fl_str_mv |
Cesar, Carlos Lenz |
| contributor_str_mv |
Cesar, Carlos Lenz |
| dc.subject.ptbr.pt_BR.fl_str_mv |
Minimum spanning tree Lockdown Guerra na Ucrânia |
| topic |
Minimum spanning tree Lockdown Guerra na Ucrânia Minimum spanning tree Lockdown War in Ukraine |
| dc.subject.en.pt_BR.fl_str_mv |
Minimum spanning tree Lockdown War in Ukraine |
| description |
In this work we will use the Minimum Spanning Tree (MST) using Correlation Distance to study the relationships between the main global stocks in the period from 2018 to 2024. The Correlation Distance matrix is given by d(i,j) = √2(1−r(i, j)), where r(i,j) is the surface coefficient between the vertices xi and x j. The brightness coefficient varies between -1, perfect anti-transparency, and +1, perfect transparency, and r(ij) = 0, meaning uncorrelated, or independent, variables. Correlation of a variable with itself is always equal to +1, r(i, i) = 1. Thus, d(i,j) varies between 0 for r(i,j)= +1, and 2 for r(ij,j) = -1. Using the distance matrix, we calculate the MST, the network that connects all variables, without cycles, with the shortest distance. To do this, we will use the PRIM algorithm, which searches for the closest vertex to any element of the network already found. We can show the MST through graphs, or reorder the expansion matrix in the order of the MST. With this, we visualize the clusters formed by proximity of variables. We use financial market data composed of the main stock indexes of the countries obtained from the ’Yahoo Finance’ database for the period 2018 - 2024, which included the years 2020-2022 with pandemic and lockdown, allowing a comparison with the years 2018-2019 to understand the economic effects of the lockdown. On the other hand, in the period 2022 and 2023, the Ukraine-Russia war took place, with strong impacts on energy and food prices, and, consequently, on the stock values of several companies. |
| publishDate |
2024 |
| dc.date.accessioned.fl_str_mv |
2024-10-30T14:08:41Z |
| dc.date.available.fl_str_mv |
2024-10-30T14:08:41Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
| format |
bachelorThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
LIMA NETO, E. B. Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global. 2024. 75 f. Monografia (Bacharelado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2024. |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufc.br/handle/riufc/78686 |
| identifier_str_mv |
LIMA NETO, E. B. Análise da rede "minimum spanning tree" de correlação econômica entre as principais ações mundiais no recente período de instabilidade global. 2024. 75 f. Monografia (Bacharelado em Física) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2024. |
| url |
http://repositorio.ufc.br/handle/riufc/78686 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/78686/6/license.txt http://repositorio.ufc.br/bitstream/riufc/78686/5/2024_tcc_eblimaneto.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 678a20bedb4ba68c4aec918eae3c75c1 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792768520290304 |