Exploring learning analytics approaches to minimize undergraduate evasion

Detalhes bibliográficos
Autor(a) principal: Barbosa, Artur Mesquita
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/29771
Resumo: One of the most difficult challenges that educators face today is reducing the high student dropout rates in their institutions. Usually, the primary goal of Learning Analytics approaches in this topic is to produce a binary classification of students that are prone to drop out or not. However, this is not enough for educators to initiate a personalized intervention to reduce the evasion’s rate. Also, the structure of the curriculum plays a prominent role in the students’ performance, and despite this fact, works that analyze curricula’s structures are scarce in the literature. This dissertation proposes two approaches to minimize the evasion in the Computer Science program at the Federal University of Ceará (UFC) by analyzing data from 892 students. At first, an in-depth analysis of the acquired data to find patterns and get insights is presented. Then, we propose a prediction strategy based on the classification with reject option paradigm, in which students are classified into the two classes described above and may also reject the patterns with a high probability of being misclassified. These are probably the ones who should be subjected to an intervention. Finally, we also propose a data mining technique that evaluates a curriculum’s structure by building a linear model describing the relationship between courses based on the students performance information. The results are visualized in a user-friendly tool, which allows for contrast and comparison between the actual structure and the modeled one.
id UFC-7_878b6732e182a304bd39ea9e80607ea4
oai_identifier_str oai:repositorio.ufc.br:riufc/29771
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Barbosa, Artur MesquitaGomes, João Paulo PordeusSantos, Emanuele Marques dos2018-02-19T10:50:02Z2018-02-19T10:50:02Z2017BARBOSA, Artur Mesquita. Exploring learning analytics approaches to minimize undergraduate evasion. 2017. 59 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2017.http://www.repositorio.ufc.br/handle/riufc/29771One of the most difficult challenges that educators face today is reducing the high student dropout rates in their institutions. Usually, the primary goal of Learning Analytics approaches in this topic is to produce a binary classification of students that are prone to drop out or not. However, this is not enough for educators to initiate a personalized intervention to reduce the evasion’s rate. Also, the structure of the curriculum plays a prominent role in the students’ performance, and despite this fact, works that analyze curricula’s structures are scarce in the literature. This dissertation proposes two approaches to minimize the evasion in the Computer Science program at the Federal University of Ceará (UFC) by analyzing data from 892 students. At first, an in-depth analysis of the acquired data to find patterns and get insights is presented. Then, we propose a prediction strategy based on the classification with reject option paradigm, in which students are classified into the two classes described above and may also reject the patterns with a high probability of being misclassified. These are probably the ones who should be subjected to an intervention. Finally, we also propose a data mining technique that evaluates a curriculum’s structure by building a linear model describing the relationship between courses based on the students performance information. The results are visualized in a user-friendly tool, which allows for contrast and comparison between the actual structure and the modeled one.Um dos maiores desafios enfrentados pelos educadores é a redução da evasão universitária em suas instituições. O objetivo principal das abordagens de Learning Analytics neste tópico costuma ser a classificação binária de estudantes em propensos a evadirem-se ou não. No entanto, isto não é suficiente para os educadores realizarem intervenções personalizadas para reduzir a taxa de evasão. Além disso, apesar da estrutura do currículo acadêmico influenciar a performance do estudante, ainda existem poucos trabalhos sobre análise curricular na literatura. Assim, esta dissertação propõe duas abordagens para minimizar a evasão no curso de Computação na Universidade Federal do Ceará (UFC) através da análise de dados de 892 estudantes. Inicialmente, é apresentada uma análise aprofundada dos dados obtidos para melhor compreendê-los e encontrar padrões. Então, é proposta uma estratégia de predição baseada no paradigma da classificação com opção de rejeição, na qual os estudantes são classificados nas duas classes descritas anteriormente, além de poderem ser rejeitados aqueles que têm alta probabilidade de serem classificados erroneamente. Estes últimos são provavelmente aqueles que precisarão passar por uma intervenção personalizada. Por fim, é proposta uma técnica de aprendizagem automática para avaliar a estrutura de um currículo acadêmico através da construção de um modelo linear que descreve a relação entre as disciplinas do curso, baseado nas informações de performance dos estudantes. Os resultados são exibidos numa ferramenta de visualização amigável para o usuário, que permite contrastar e comparar a estrutura atual com a proposta pelo modelo.Learning analyticsCollege evasionMachine learningData visualizationExploring learning analytics approaches to minimize undergraduate evasioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/29771/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2017_dis_ambarbosa.pdf2017_dis_ambarbosa.pdfapplication/pdf3221515http://repositorio.ufc.br/bitstream/riufc/29771/3/2017_dis_ambarbosa.pdf35c4fa73d7b385b8a074b40a46250f89MD53riufc/297712020-07-02 10:44:43.073oai:repositorio.ufc.br:riufc/29771Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-07-02T13:44:43Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Exploring learning analytics approaches to minimize undergraduate evasion
title Exploring learning analytics approaches to minimize undergraduate evasion
spellingShingle Exploring learning analytics approaches to minimize undergraduate evasion
Barbosa, Artur Mesquita
Learning analytics
College evasion
Machine learning
Data visualization
title_short Exploring learning analytics approaches to minimize undergraduate evasion
title_full Exploring learning analytics approaches to minimize undergraduate evasion
title_fullStr Exploring learning analytics approaches to minimize undergraduate evasion
title_full_unstemmed Exploring learning analytics approaches to minimize undergraduate evasion
title_sort Exploring learning analytics approaches to minimize undergraduate evasion
author Barbosa, Artur Mesquita
author_facet Barbosa, Artur Mesquita
author_role author
dc.contributor.co-advisor.none.fl_str_mv Gomes, João Paulo Pordeus
dc.contributor.author.fl_str_mv Barbosa, Artur Mesquita
dc.contributor.advisor1.fl_str_mv Santos, Emanuele Marques dos
contributor_str_mv Santos, Emanuele Marques dos
dc.subject.por.fl_str_mv Learning analytics
College evasion
Machine learning
Data visualization
topic Learning analytics
College evasion
Machine learning
Data visualization
description One of the most difficult challenges that educators face today is reducing the high student dropout rates in their institutions. Usually, the primary goal of Learning Analytics approaches in this topic is to produce a binary classification of students that are prone to drop out or not. However, this is not enough for educators to initiate a personalized intervention to reduce the evasion’s rate. Also, the structure of the curriculum plays a prominent role in the students’ performance, and despite this fact, works that analyze curricula’s structures are scarce in the literature. This dissertation proposes two approaches to minimize the evasion in the Computer Science program at the Federal University of Ceará (UFC) by analyzing data from 892 students. At first, an in-depth analysis of the acquired data to find patterns and get insights is presented. Then, we propose a prediction strategy based on the classification with reject option paradigm, in which students are classified into the two classes described above and may also reject the patterns with a high probability of being misclassified. These are probably the ones who should be subjected to an intervention. Finally, we also propose a data mining technique that evaluates a curriculum’s structure by building a linear model describing the relationship between courses based on the students performance information. The results are visualized in a user-friendly tool, which allows for contrast and comparison between the actual structure and the modeled one.
publishDate 2017
dc.date.issued.fl_str_mv 2017
dc.date.accessioned.fl_str_mv 2018-02-19T10:50:02Z
dc.date.available.fl_str_mv 2018-02-19T10:50:02Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv BARBOSA, Artur Mesquita. Exploring learning analytics approaches to minimize undergraduate evasion. 2017. 59 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2017.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/29771
identifier_str_mv BARBOSA, Artur Mesquita. Exploring learning analytics approaches to minimize undergraduate evasion. 2017. 59 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2017.
url http://www.repositorio.ufc.br/handle/riufc/29771
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/29771/2/license.txt
http://repositorio.ufc.br/bitstream/riufc/29771/3/2017_dis_ambarbosa.pdf
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
35c4fa73d7b385b8a074b40a46250f89
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792678259916800