Exploring learning analytics approaches to minimize undergraduate evasion
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2017 |
| Tipo de documento: | Dissertação |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
| Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/29771 |
Resumo: | One of the most difficult challenges that educators face today is reducing the high student dropout rates in their institutions. Usually, the primary goal of Learning Analytics approaches in this topic is to produce a binary classification of students that are prone to drop out or not. However, this is not enough for educators to initiate a personalized intervention to reduce the evasion’s rate. Also, the structure of the curriculum plays a prominent role in the students’ performance, and despite this fact, works that analyze curricula’s structures are scarce in the literature. This dissertation proposes two approaches to minimize the evasion in the Computer Science program at the Federal University of Ceará (UFC) by analyzing data from 892 students. At first, an in-depth analysis of the acquired data to find patterns and get insights is presented. Then, we propose a prediction strategy based on the classification with reject option paradigm, in which students are classified into the two classes described above and may also reject the patterns with a high probability of being misclassified. These are probably the ones who should be subjected to an intervention. Finally, we also propose a data mining technique that evaluates a curriculum’s structure by building a linear model describing the relationship between courses based on the students performance information. The results are visualized in a user-friendly tool, which allows for contrast and comparison between the actual structure and the modeled one. |
| id |
UFC-7_878b6732e182a304bd39ea9e80607ea4 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/29771 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Barbosa, Artur MesquitaGomes, João Paulo PordeusSantos, Emanuele Marques dos2018-02-19T10:50:02Z2018-02-19T10:50:02Z2017BARBOSA, Artur Mesquita. Exploring learning analytics approaches to minimize undergraduate evasion. 2017. 59 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2017.http://www.repositorio.ufc.br/handle/riufc/29771One of the most difficult challenges that educators face today is reducing the high student dropout rates in their institutions. Usually, the primary goal of Learning Analytics approaches in this topic is to produce a binary classification of students that are prone to drop out or not. However, this is not enough for educators to initiate a personalized intervention to reduce the evasion’s rate. Also, the structure of the curriculum plays a prominent role in the students’ performance, and despite this fact, works that analyze curricula’s structures are scarce in the literature. This dissertation proposes two approaches to minimize the evasion in the Computer Science program at the Federal University of Ceará (UFC) by analyzing data from 892 students. At first, an in-depth analysis of the acquired data to find patterns and get insights is presented. Then, we propose a prediction strategy based on the classification with reject option paradigm, in which students are classified into the two classes described above and may also reject the patterns with a high probability of being misclassified. These are probably the ones who should be subjected to an intervention. Finally, we also propose a data mining technique that evaluates a curriculum’s structure by building a linear model describing the relationship between courses based on the students performance information. The results are visualized in a user-friendly tool, which allows for contrast and comparison between the actual structure and the modeled one.Um dos maiores desafios enfrentados pelos educadores é a redução da evasão universitária em suas instituições. O objetivo principal das abordagens de Learning Analytics neste tópico costuma ser a classificação binária de estudantes em propensos a evadirem-se ou não. No entanto, isto não é suficiente para os educadores realizarem intervenções personalizadas para reduzir a taxa de evasão. Além disso, apesar da estrutura do currículo acadêmico influenciar a performance do estudante, ainda existem poucos trabalhos sobre análise curricular na literatura. Assim, esta dissertação propõe duas abordagens para minimizar a evasão no curso de Computação na Universidade Federal do Ceará (UFC) através da análise de dados de 892 estudantes. Inicialmente, é apresentada uma análise aprofundada dos dados obtidos para melhor compreendê-los e encontrar padrões. Então, é proposta uma estratégia de predição baseada no paradigma da classificação com opção de rejeição, na qual os estudantes são classificados nas duas classes descritas anteriormente, além de poderem ser rejeitados aqueles que têm alta probabilidade de serem classificados erroneamente. Estes últimos são provavelmente aqueles que precisarão passar por uma intervenção personalizada. Por fim, é proposta uma técnica de aprendizagem automática para avaliar a estrutura de um currículo acadêmico através da construção de um modelo linear que descreve a relação entre as disciplinas do curso, baseado nas informações de performance dos estudantes. Os resultados são exibidos numa ferramenta de visualização amigável para o usuário, que permite contrastar e comparar a estrutura atual com a proposta pelo modelo.Learning analyticsCollege evasionMachine learningData visualizationExploring learning analytics approaches to minimize undergraduate evasioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/29771/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2017_dis_ambarbosa.pdf2017_dis_ambarbosa.pdfapplication/pdf3221515http://repositorio.ufc.br/bitstream/riufc/29771/3/2017_dis_ambarbosa.pdf35c4fa73d7b385b8a074b40a46250f89MD53riufc/297712020-07-02 10:44:43.073oai:repositorio.ufc.br:riufc/29771Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2020-07-02T13:44:43Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Exploring learning analytics approaches to minimize undergraduate evasion |
| title |
Exploring learning analytics approaches to minimize undergraduate evasion |
| spellingShingle |
Exploring learning analytics approaches to minimize undergraduate evasion Barbosa, Artur Mesquita Learning analytics College evasion Machine learning Data visualization |
| title_short |
Exploring learning analytics approaches to minimize undergraduate evasion |
| title_full |
Exploring learning analytics approaches to minimize undergraduate evasion |
| title_fullStr |
Exploring learning analytics approaches to minimize undergraduate evasion |
| title_full_unstemmed |
Exploring learning analytics approaches to minimize undergraduate evasion |
| title_sort |
Exploring learning analytics approaches to minimize undergraduate evasion |
| author |
Barbosa, Artur Mesquita |
| author_facet |
Barbosa, Artur Mesquita |
| author_role |
author |
| dc.contributor.co-advisor.none.fl_str_mv |
Gomes, João Paulo Pordeus |
| dc.contributor.author.fl_str_mv |
Barbosa, Artur Mesquita |
| dc.contributor.advisor1.fl_str_mv |
Santos, Emanuele Marques dos |
| contributor_str_mv |
Santos, Emanuele Marques dos |
| dc.subject.por.fl_str_mv |
Learning analytics College evasion Machine learning Data visualization |
| topic |
Learning analytics College evasion Machine learning Data visualization |
| description |
One of the most difficult challenges that educators face today is reducing the high student dropout rates in their institutions. Usually, the primary goal of Learning Analytics approaches in this topic is to produce a binary classification of students that are prone to drop out or not. However, this is not enough for educators to initiate a personalized intervention to reduce the evasion’s rate. Also, the structure of the curriculum plays a prominent role in the students’ performance, and despite this fact, works that analyze curricula’s structures are scarce in the literature. This dissertation proposes two approaches to minimize the evasion in the Computer Science program at the Federal University of Ceará (UFC) by analyzing data from 892 students. At first, an in-depth analysis of the acquired data to find patterns and get insights is presented. Then, we propose a prediction strategy based on the classification with reject option paradigm, in which students are classified into the two classes described above and may also reject the patterns with a high probability of being misclassified. These are probably the ones who should be subjected to an intervention. Finally, we also propose a data mining technique that evaluates a curriculum’s structure by building a linear model describing the relationship between courses based on the students performance information. The results are visualized in a user-friendly tool, which allows for contrast and comparison between the actual structure and the modeled one. |
| publishDate |
2017 |
| dc.date.issued.fl_str_mv |
2017 |
| dc.date.accessioned.fl_str_mv |
2018-02-19T10:50:02Z |
| dc.date.available.fl_str_mv |
2018-02-19T10:50:02Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
BARBOSA, Artur Mesquita. Exploring learning analytics approaches to minimize undergraduate evasion. 2017. 59 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2017. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/29771 |
| identifier_str_mv |
BARBOSA, Artur Mesquita. Exploring learning analytics approaches to minimize undergraduate evasion. 2017. 59 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal do Ceará, Fortaleza, 2017. |
| url |
http://www.repositorio.ufc.br/handle/riufc/29771 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/29771/2/license.txt http://repositorio.ufc.br/bitstream/riufc/29771/3/2017_dis_ambarbosa.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 35c4fa73d7b385b8a074b40a46250f89 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792678259916800 |