Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2005 |
| Outros Autores: | , |
| Tipo de documento: | Artigo de conferência |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
| Texto Completo: | http://www.repositorio.ufc.br/handle/riufc/68333 |
Resumo: | A competitive manufacturing enterprise depends on a high level performance of its processes. In the metal- mechanic industry, such a requirement is pursued through the development of reliable monitoring systems. These systems must assure reliable information about the process itself, and about the machine’s parameters. This paper proposes an efficient strategy for the automatic monitoring and diagnosis of dressing operations. The proposed system is based on Artificial Intelligence (AI) techniques, like neural networks, support vector machines, and decision trees, to classify textural features of an image, the acoustic map, which represents the interaction between the dresser and the grinding wheel. The classification indicates if the dressing operation should stop or not, what implies in a better use of the grinding wheel and costs reduction. The results obtained in the performed simulations are very promising, with 100% of right matches with the best tested classifiers. Such initial results point out to an increase in the production velocity, and the reducing in the number of defective pieces. |
| id |
UFC-7_68f295515efdfd8cebc1fecab912440b |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/68333 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Braga, Arthur Plínio de SouzaCarvalho, André Carlos Ponce de Leon Ferreira deOliveira, João Fernando Gomes de2022-09-16T19:17:17Z2022-09-16T19:17:17Z2005BRAGA, A. P. S.; CARVALHO, A. C. P. L. F.; OLIVEIRA, J. F. G. Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 18., 2005, Ouro Preto. Anais... Ouro Preto: COBEM, 2005. p. 1-8.http://www.repositorio.ufc.br/handle/riufc/68333A competitive manufacturing enterprise depends on a high level performance of its processes. In the metal- mechanic industry, such a requirement is pursued through the development of reliable monitoring systems. These systems must assure reliable information about the process itself, and about the machine’s parameters. This paper proposes an efficient strategy for the automatic monitoring and diagnosis of dressing operations. The proposed system is based on Artificial Intelligence (AI) techniques, like neural networks, support vector machines, and decision trees, to classify textural features of an image, the acoustic map, which represents the interaction between the dresser and the grinding wheel. The classification indicates if the dressing operation should stop or not, what implies in a better use of the grinding wheel and costs reduction. The results obtained in the performed simulations are very promising, with 100% of right matches with the best tested classifiers. Such initial results point out to an increase in the production velocity, and the reducing in the number of defective pieces.International Congress of Mechanical EngineeringDressing monitoring systemAcoustic emissionNeural networkAutomatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic mapsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2005_eve_apsbraga.pdf2005_eve_apsbraga.pdfapplication/pdf649972http://repositorio.ufc.br/bitstream/riufc/68333/1/2005_eve_apsbraga.pdf94c3b07f8321f46b8ed29e4229dca92aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82152http://repositorio.ufc.br/bitstream/riufc/68333/2/license.txtfb3ad2d23d9790966439580114baefafMD52riufc/683332022-11-18 15:13:47.47oai:repositorio.ufc.br:riufc/68333TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIAoKQW8gY29uY29yZGFyIGNvbSBlc3RhIGxpY2Vuw6dhLCB2b2PDqihzKSBhdXRvcihlcykgb3UgdGl0dWxhcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIG9icmEgYXF1aSBkZXNjcml0YSBjb25jZWRlKG0pIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSBlL291IGRpc3RyaWJ1aXIgbyBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbSBmb3JtYXRvIGltcHJlc3NvLCBlbGV0csO0bmljbyBvdSBlbSBxdWFscXVlciBvdXRybyBtZWlvLiBWb2PDqiBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgY29udmVydGVyIG8gYXJxdWl2byBkZXBvc2l0YWRvIGEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIGNvbSBmaW5zIGRlIHByZXNlcnZhw6fDo28uIFZvY8OqKHMpIHRhbWLDqW0gY29uY29yZGEobSkgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlc3RlIGRlcMOzc2l0byBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlL291IHByZXNlcnZhw6fDo28uIFZvY8OqIGRlY2xhcmEgcXVlIGEgYXByZXNlbnRhw6fDo28gZG8gc2V1IHRyYWJhbGhvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqKHMpIHBvZGUobSkgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYShtKSBxdWUgbyBlbnZpbyDDqSBkZSBzZXUgY29uaGVjaW1lbnRvIGUgbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBvdXRyYSBwZXNzb2Egb3UgaW5zdGl0dWnDp8Ojby4gQ2FzbyBvIGRvY3VtZW50byBhIHNlciBkZXBvc2l0YWRvIGNvbnRlbmhhIG1hdGVyaWFsIHBhcmEgbyBxdWFsIHZvY8OqKHMpIG7Do28gZGV0w6ltIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBkZSBhdXRvcmFpcywgdm9jw6oocykgZGVjbGFyYShtKSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EgZSBxdWUgb3MgbWF0ZXJpYWlzIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcywgZXN0w6NvIGRldmlkYW1lbnRlIGlkZW50aWZpY2Fkb3MgZSByZWNvbmhlY2lkb3Mgbm8gdGV4dG8gb3UgY29udGXDumRvIGRhIGFwcmVzZW50YcOnw6NvLgogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gCk8gcmVwb3NpdMOzcmlvIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBvIHNldShzKSBub21lKHMpIGNvbW8gYXV0b3IoZXMpIG91IHRpdHVsYXIoZXMpIGRvIGRpcmVpdG8gZGUgYXV0b3IoZXMpIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gZSBkZWNsYXJhIHF1ZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvIGFsw6ltIGRhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgpSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-11-18T18:13:47Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps |
| title |
Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps |
| spellingShingle |
Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps Braga, Arthur Plínio de Souza Dressing monitoring system Acoustic emission Neural network |
| title_short |
Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps |
| title_full |
Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps |
| title_fullStr |
Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps |
| title_full_unstemmed |
Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps |
| title_sort |
Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps |
| author |
Braga, Arthur Plínio de Souza |
| author_facet |
Braga, Arthur Plínio de Souza Carvalho, André Carlos Ponce de Leon Ferreira de Oliveira, João Fernando Gomes de |
| author_role |
author |
| author2 |
Carvalho, André Carlos Ponce de Leon Ferreira de Oliveira, João Fernando Gomes de |
| author2_role |
author author |
| dc.contributor.author.fl_str_mv |
Braga, Arthur Plínio de Souza Carvalho, André Carlos Ponce de Leon Ferreira de Oliveira, João Fernando Gomes de |
| dc.subject.por.fl_str_mv |
Dressing monitoring system Acoustic emission Neural network |
| topic |
Dressing monitoring system Acoustic emission Neural network |
| description |
A competitive manufacturing enterprise depends on a high level performance of its processes. In the metal- mechanic industry, such a requirement is pursued through the development of reliable monitoring systems. These systems must assure reliable information about the process itself, and about the machine’s parameters. This paper proposes an efficient strategy for the automatic monitoring and diagnosis of dressing operations. The proposed system is based on Artificial Intelligence (AI) techniques, like neural networks, support vector machines, and decision trees, to classify textural features of an image, the acoustic map, which represents the interaction between the dresser and the grinding wheel. The classification indicates if the dressing operation should stop or not, what implies in a better use of the grinding wheel and costs reduction. The results obtained in the performed simulations are very promising, with 100% of right matches with the best tested classifiers. Such initial results point out to an increase in the production velocity, and the reducing in the number of defective pieces. |
| publishDate |
2005 |
| dc.date.issued.fl_str_mv |
2005 |
| dc.date.accessioned.fl_str_mv |
2022-09-16T19:17:17Z |
| dc.date.available.fl_str_mv |
2022-09-16T19:17:17Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
BRAGA, A. P. S.; CARVALHO, A. C. P. L. F.; OLIVEIRA, J. F. G. Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 18., 2005, Ouro Preto. Anais... Ouro Preto: COBEM, 2005. p. 1-8. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/68333 |
| identifier_str_mv |
BRAGA, A. P. S.; CARVALHO, A. C. P. L. F.; OLIVEIRA, J. F. G. Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 18., 2005, Ouro Preto. Anais... Ouro Preto: COBEM, 2005. p. 1-8. |
| url |
http://www.repositorio.ufc.br/handle/riufc/68333 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
International Congress of Mechanical Engineering |
| publisher.none.fl_str_mv |
International Congress of Mechanical Engineering |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/68333/1/2005_eve_apsbraga.pdf http://repositorio.ufc.br/bitstream/riufc/68333/2/license.txt |
| bitstream.checksum.fl_str_mv |
94c3b07f8321f46b8ed29e4229dca92a fb3ad2d23d9790966439580114baefaf |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792873826680832 |