Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps

Detalhes bibliográficos
Autor(a) principal: Braga, Arthur Plínio de Souza
Data de Publicação: 2005
Outros Autores: Carvalho, André Carlos Ponce de Leon Ferreira de, Oliveira, João Fernando Gomes de
Tipo de documento: Artigo de conferência
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal do Ceará (UFC)
Texto Completo: http://www.repositorio.ufc.br/handle/riufc/68333
Resumo: A competitive manufacturing enterprise depends on a high level performance of its processes. In the metal- mechanic industry, such a requirement is pursued through the development of reliable monitoring systems. These systems must assure reliable information about the process itself, and about the machine’s parameters. This paper proposes an efficient strategy for the automatic monitoring and diagnosis of dressing operations. The proposed system is based on Artificial Intelligence (AI) techniques, like neural networks, support vector machines, and decision trees, to classify textural features of an image, the acoustic map, which represents the interaction between the dresser and the grinding wheel. The classification indicates if the dressing operation should stop or not, what implies in a better use of the grinding wheel and costs reduction. The results obtained in the performed simulations are very promising, with 100% of right matches with the best tested classifiers. Such initial results point out to an increase in the production velocity, and the reducing in the number of defective pieces.
id UFC-7_68f295515efdfd8cebc1fecab912440b
oai_identifier_str oai:repositorio.ufc.br:riufc/68333
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Braga, Arthur Plínio de SouzaCarvalho, André Carlos Ponce de Leon Ferreira deOliveira, João Fernando Gomes de2022-09-16T19:17:17Z2022-09-16T19:17:17Z2005BRAGA, A. P. S.; CARVALHO, A. C. P. L. F.; OLIVEIRA, J. F. G. Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 18., 2005, Ouro Preto. Anais... Ouro Preto: COBEM, 2005. p. 1-8.http://www.repositorio.ufc.br/handle/riufc/68333A competitive manufacturing enterprise depends on a high level performance of its processes. In the metal- mechanic industry, such a requirement is pursued through the development of reliable monitoring systems. These systems must assure reliable information about the process itself, and about the machine’s parameters. This paper proposes an efficient strategy for the automatic monitoring and diagnosis of dressing operations. The proposed system is based on Artificial Intelligence (AI) techniques, like neural networks, support vector machines, and decision trees, to classify textural features of an image, the acoustic map, which represents the interaction between the dresser and the grinding wheel. The classification indicates if the dressing operation should stop or not, what implies in a better use of the grinding wheel and costs reduction. The results obtained in the performed simulations are very promising, with 100% of right matches with the best tested classifiers. Such initial results point out to an increase in the production velocity, and the reducing in the number of defective pieces.International Congress of Mechanical EngineeringDressing monitoring systemAcoustic emissionNeural networkAutomatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic mapsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessORIGINAL2005_eve_apsbraga.pdf2005_eve_apsbraga.pdfapplication/pdf649972http://repositorio.ufc.br/bitstream/riufc/68333/1/2005_eve_apsbraga.pdf94c3b07f8321f46b8ed29e4229dca92aMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-82152http://repositorio.ufc.br/bitstream/riufc/68333/2/license.txtfb3ad2d23d9790966439580114baefafMD52riufc/683332022-11-18 15:13:47.47oai:repositorio.ufc.br:riufc/68333TElDRU7Dh0EgREUgQVJNQVpFTkFNRU5UTyBFIERJU1RSSUJVScOHw4NPIE7Dg08tRVhDTFVTSVZBIAoKQW8gY29uY29yZGFyIGNvbSBlc3RhIGxpY2Vuw6dhLCB2b2PDqihzKSBhdXRvcihlcykgb3UgdGl0dWxhcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIG9icmEgYXF1aSBkZXNjcml0YSBjb25jZWRlKG0pIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCBjb252ZXJ0ZXIgKGNvbW8gZGVmaW5pZG8gYWJhaXhvKSBlL291IGRpc3RyaWJ1aXIgbyBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbSBmb3JtYXRvIGltcHJlc3NvLCBlbGV0csO0bmljbyBvdSBlbSBxdWFscXVlciBvdXRybyBtZWlvLiBWb2PDqiBjb25jb3JkYShtKSBxdWUgYSBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkbyBDZWFyw6EsIGdlc3RvcmEgZG8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgZGEgVUZDIC0gUkkvVUZDLCBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgY29udmVydGVyIG8gYXJxdWl2byBkZXBvc2l0YWRvIGEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIGNvbSBmaW5zIGRlIHByZXNlcnZhw6fDo28uIFZvY8OqKHMpIHRhbWLDqW0gY29uY29yZGEobSkgcXVlIGEgVW5pdmVyc2lkYWRlIEZlZGVyYWwgZG8gQ2VhcsOhLCBnZXN0b3JhIGRvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGQyAtIFJJL1VGQywgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlc3RlIGRlcMOzc2l0byBwYXJhIGZpbnMgZGUgc2VndXJhbsOnYSwgYmFjay11cCBlL291IHByZXNlcnZhw6fDo28uIFZvY8OqIGRlY2xhcmEgcXVlIGEgYXByZXNlbnRhw6fDo28gZG8gc2V1IHRyYWJhbGhvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqKHMpIHBvZGUobSkgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYShtKSBxdWUgbyBlbnZpbyDDqSBkZSBzZXUgY29uaGVjaW1lbnRvIGUgbsOjbyBpbmZyaW5nZSBvcyBkaXJlaXRvcyBhdXRvcmFpcyBkZSBvdXRyYSBwZXNzb2Egb3UgaW5zdGl0dWnDp8Ojby4gQ2FzbyBvIGRvY3VtZW50byBhIHNlciBkZXBvc2l0YWRvIGNvbnRlbmhhIG1hdGVyaWFsIHBhcmEgbyBxdWFsIHZvY8OqKHMpIG7Do28gZGV0w6ltIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBkZSBhdXRvcmFpcywgdm9jw6oocykgZGVjbGFyYShtKSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRlIGNvbmNlZGVyIMOgIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRvIENlYXLDoSwgZ2VzdG9yYSBkbyBSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMgLSBSSS9VRkMsIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgbGljZW7Dp2EgZSBxdWUgb3MgbWF0ZXJpYWlzIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcywgZXN0w6NvIGRldmlkYW1lbnRlIGlkZW50aWZpY2Fkb3MgZSByZWNvbmhlY2lkb3Mgbm8gdGV4dG8gb3UgY29udGXDumRvIGRhIGFwcmVzZW50YcOnw6NvLgogQ0FTTyBPIFRSQUJBTEhPIERFUE9TSVRBRE8gVEVOSEEgU0lETyBGSU5BTkNJQURPIE9VIEFQT0lBRE8gUE9SIFVNIMOTUkfDg08sIFFVRSBOw4NPIEEgSU5TVElUVUnDh8ODTyBERVNURSBSRVBPU0lUw5NSSU86IFZPQ8OKIERFQ0xBUkEgVEVSIENVTVBSSURPIFRPRE9TIE9TIERJUkVJVE9TIERFIFJFVklTw4NPIEUgUVVBSVNRVUVSIE9VVFJBUyBPQlJJR0HDh8OVRVMgUkVRVUVSSURBUyBQRUxPIENPTlRSQVRPIE9VIEFDT1JETy4gCk8gcmVwb3NpdMOzcmlvIGlkZW50aWZpY2Fyw6EgY2xhcmFtZW50ZSBvIHNldShzKSBub21lKHMpIGNvbW8gYXV0b3IoZXMpIG91IHRpdHVsYXIoZXMpIGRvIGRpcmVpdG8gZGUgYXV0b3IoZXMpIGRvIGRvY3VtZW50byBzdWJtZXRpZG8gZSBkZWNsYXJhIHF1ZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvIGFsw6ltIGRhcyBwZXJtaXRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgpSZXBvc2l0w7NyaW8gSW5zdGl0dWNpb25hbCBkYSBVRkMuCg==Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-11-18T18:13:47Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps
title Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps
spellingShingle Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps
Braga, Arthur Plínio de Souza
Dressing monitoring system
Acoustic emission
Neural network
title_short Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps
title_full Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps
title_fullStr Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps
title_full_unstemmed Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps
title_sort Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps
author Braga, Arthur Plínio de Souza
author_facet Braga, Arthur Plínio de Souza
Carvalho, André Carlos Ponce de Leon Ferreira de
Oliveira, João Fernando Gomes de
author_role author
author2 Carvalho, André Carlos Ponce de Leon Ferreira de
Oliveira, João Fernando Gomes de
author2_role author
author
dc.contributor.author.fl_str_mv Braga, Arthur Plínio de Souza
Carvalho, André Carlos Ponce de Leon Ferreira de
Oliveira, João Fernando Gomes de
dc.subject.por.fl_str_mv Dressing monitoring system
Acoustic emission
Neural network
topic Dressing monitoring system
Acoustic emission
Neural network
description A competitive manufacturing enterprise depends on a high level performance of its processes. In the metal- mechanic industry, such a requirement is pursued through the development of reliable monitoring systems. These systems must assure reliable information about the process itself, and about the machine’s parameters. This paper proposes an efficient strategy for the automatic monitoring and diagnosis of dressing operations. The proposed system is based on Artificial Intelligence (AI) techniques, like neural networks, support vector machines, and decision trees, to classify textural features of an image, the acoustic map, which represents the interaction between the dresser and the grinding wheel. The classification indicates if the dressing operation should stop or not, what implies in a better use of the grinding wheel and costs reduction. The results obtained in the performed simulations are very promising, with 100% of right matches with the best tested classifiers. Such initial results point out to an increase in the production velocity, and the reducing in the number of defective pieces.
publishDate 2005
dc.date.issued.fl_str_mv 2005
dc.date.accessioned.fl_str_mv 2022-09-16T19:17:17Z
dc.date.available.fl_str_mv 2022-09-16T19:17:17Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.citation.fl_str_mv BRAGA, A. P. S.; CARVALHO, A. C. P. L. F.; OLIVEIRA, J. F. G. Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 18., 2005, Ouro Preto. Anais... Ouro Preto: COBEM, 2005. p. 1-8.
dc.identifier.uri.fl_str_mv http://www.repositorio.ufc.br/handle/riufc/68333
identifier_str_mv BRAGA, A. P. S.; CARVALHO, A. C. P. L. F.; OLIVEIRA, J. F. G. Automatic monitoring and diagnosis of the dressing operation through the classification of textural patterns in acoustic maps. In: INTERNATIONAL CONGRESS OF MECHANICAL ENGINEERING, 18., 2005, Ouro Preto. Anais... Ouro Preto: COBEM, 2005. p. 1-8.
url http://www.repositorio.ufc.br/handle/riufc/68333
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv International Congress of Mechanical Engineering
publisher.none.fl_str_mv International Congress of Mechanical Engineering
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/68333/1/2005_eve_apsbraga.pdf
http://repositorio.ufc.br/bitstream/riufc/68333/2/license.txt
bitstream.checksum.fl_str_mv 94c3b07f8321f46b8ed29e4229dca92a
fb3ad2d23d9790966439580114baefaf
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792873826680832