Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects

Bibliographic Details
Main Author: Costa, Stefane Nunes
Publication Date: 2023
Format: Doctoral thesis
Language: eng
Source: Repositório Institucional da Universidade Federal do Ceará (UFC)
Download full: http://repositorio.ufc.br/handle/riufc/80746
Summary: This work presents the application of modified azole molecules (imidazole and triazole) for application as a corrosion inhibitor for copper electrode in sulfuric acid 0.5 mol L-1. The compounds to be evaluated are: 4-(1H-imidazole-1-yl)benzaldehyde (IB), 4-(1H-imidazole-1-yl)aniline (IA), [4-(1H-imidazole-1-yl)-Phenyl]Methanol (IFM), 4-(Imidazole-1-yl)-Phenol (IF), 1-phenyl-2-(1H-1,2,4-triazole-1-yl)ethanone (TR-1), 1-(2,4-difluorophenyl)-2(1H-1,2,4-triazole-1-yl)ethanone (TR-2), 1-(4-chlorophenyl)-2-(1H-1, 2, 4-triazole-1-yl)ethanone (TR-3) and 1-(p-toluyl)-2-(1H-1,2,4-triazole-1-yl)ethanone (TR-4). Electrochemical techniques such as Open Circuit Potential (OCP), Linear Potentiodynamic Polarization (LPP) and Electrochemical Impedance Spectroscopy (EIS) were performed, as well as chemical modeling was applied using Monte Carlo and DFT techniques. All imidazole derivatives inhibited copper corrosion, and the inhibition values were between 80 and 94%. A good correlation between the values of inhibition efficiency and Gibbs adsorption energy were found, showing that the more negative Gibbs energy, the better interaction of the corrosion inhibitor with the copper surface, decreasing its corrosion in 0.5 mol L-1 medium H2SO4. DFT calculations showed differences in the electronic and reactivity properties of imidazole and other molecules. The higher corrosion inhibition of imidazole derivatives can be explained by the electrophilic characteristic of these molecules, since there are empty molecular orbitals scattered mainly in benzene rings that transfer metal-to-binder charge, receiving electron density from the copper surface. By backbonding, according to the Fukui electronic functions and the potential charge distribution considering the electrostatic potential map. Regarding the triazoles, the analysis of the electrochemical data showed that TR-2 presented the highest inhibition efficiency (95.12% for LPP and 83.55% for EIE). The isothermal analysis showed that TR-s presented the highest adsorption constant, as well as the lowest Gibbs adsorption energy. Considering the Monte Carlo simulations, the TR-2 molecule is adsorbed on the electrode surface by the triazole group, which favors the creation of a stable film on the electrode. Electronic analysis of the DFT calculations shows that the polarity and LUMO energies of the molecules play an important role in creating a coordination complex between the electrode surface and the TR-2 inhibitor molecule. Keywords: corrosion inhibitors, imidazole, triazole, copper, DFT
id UFC-7_55a2e840cffd09d0de1cc80f50fde5fe
oai_identifier_str oai:repositorio.ufc.br:riufc/80746
network_acronym_str UFC-7
network_name_str Repositório Institucional da Universidade Federal do Ceará (UFC)
repository_id_str
spelling Costa, Stefane NunesLima Neto, Pedro de2025-05-06T17:19:36Z2025-05-06T17:19:36Z2023COSTA, Stefane Nunes. Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects. 2023. 89 f. Tese (Doutorado em Engenharia e Ciência de Materiais) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.http://repositorio.ufc.br/handle/riufc/80746This work presents the application of modified azole molecules (imidazole and triazole) for application as a corrosion inhibitor for copper electrode in sulfuric acid 0.5 mol L-1. The compounds to be evaluated are: 4-(1H-imidazole-1-yl)benzaldehyde (IB), 4-(1H-imidazole-1-yl)aniline (IA), [4-(1H-imidazole-1-yl)-Phenyl]Methanol (IFM), 4-(Imidazole-1-yl)-Phenol (IF), 1-phenyl-2-(1H-1,2,4-triazole-1-yl)ethanone (TR-1), 1-(2,4-difluorophenyl)-2(1H-1,2,4-triazole-1-yl)ethanone (TR-2), 1-(4-chlorophenyl)-2-(1H-1, 2, 4-triazole-1-yl)ethanone (TR-3) and 1-(p-toluyl)-2-(1H-1,2,4-triazole-1-yl)ethanone (TR-4). Electrochemical techniques such as Open Circuit Potential (OCP), Linear Potentiodynamic Polarization (LPP) and Electrochemical Impedance Spectroscopy (EIS) were performed, as well as chemical modeling was applied using Monte Carlo and DFT techniques. All imidazole derivatives inhibited copper corrosion, and the inhibition values were between 80 and 94%. A good correlation between the values of inhibition efficiency and Gibbs adsorption energy were found, showing that the more negative Gibbs energy, the better interaction of the corrosion inhibitor with the copper surface, decreasing its corrosion in 0.5 mol L-1 medium H2SO4. DFT calculations showed differences in the electronic and reactivity properties of imidazole and other molecules. The higher corrosion inhibition of imidazole derivatives can be explained by the electrophilic characteristic of these molecules, since there are empty molecular orbitals scattered mainly in benzene rings that transfer metal-to-binder charge, receiving electron density from the copper surface. By backbonding, according to the Fukui electronic functions and the potential charge distribution considering the electrostatic potential map. Regarding the triazoles, the analysis of the electrochemical data showed that TR-2 presented the highest inhibition efficiency (95.12% for LPP and 83.55% for EIE). The isothermal analysis showed that TR-s presented the highest adsorption constant, as well as the lowest Gibbs adsorption energy. Considering the Monte Carlo simulations, the TR-2 molecule is adsorbed on the electrode surface by the triazole group, which favors the creation of a stable film on the electrode. Electronic analysis of the DFT calculations shows that the polarity and LUMO energies of the molecules play an important role in creating a coordination complex between the electrode surface and the TR-2 inhibitor molecule. Keywords: corrosion inhibitors, imidazole, triazole, copper, DFTEste trabalho apresenta a aplicação de moléculas azóles (imidazol e triazol) modificadas para aplicação como inibidor de corrosão para eletrodo de cobre em ácido sulfúrico 0,5mol L-1. Os compostos a serem avaliados são: 4-(1H-imidazol-1-il)benzaldeído (IB), 4-(1H-imidazol-1-il)anilina 4-(Imidazol-1-il)-Fenol (IA), (IF), [4-(1H-imidazol-1-il )-Fenil]Metanol 1-fenil-2-(1H-1,2,4-triazol-1-il) etanona (MFI),(TR-1), 1-(2,4-difluorofenil)-2(1H-1,2,4-triazol-1-il)etanona (TR-2), 1-(4-clorofenil)-2-(1H-1,2, 4-triazol-1-il)etanona (TR-3) e 1-(p-toluil)-2-(1H-1,2,4-triazol-1-il)etanona (TR-4). Várias técnicas eletroquímicas, como Potencial de Circuito Aberto (PCA), Polarização Potenciodinâmica Linear (PPL) e Espectroscopia de Impedância Eletroquímica (EIE), foram realizadas, bem como modelagem química foi aplicada usando técnicas de Monte Carlo e DFT. Todos os derivados do imidazol inibiram a corrosão do cobre, e os valores de inibição situaram-se entre 80 e 94%. Uma boa correlação entre os valores de eficiência de inibição e energia de adsorção de Gibbs foram encontrados, mostrando que quanto mais energia de Gibbs negativa, melhor interação do inibidor de corrosão com a superfície cobre, diminuindo sua corrosão em meio 0,5 mol L -1 H 2 SO 4 . Os cálculos da DFT mostraram diferenças nas propriedades eletrônicas e de reatividade do imidazol e outras moléculas. Quanto mais alto a inibição da corrosão de derivados imidazólicos pode ser explicada pela característica eletrofílica de essas moléculas, uma vez que existem orbitais moleculares vazios espalhados principalmente em anéis de benzeno que fazem uma transferência de carga metal-ligante, recebendo densidade eletrônica da superfície do cobre por backbonding, de acordo com as funções eletrônicas de Fukui e a distribuição de carga potencial considerando o mapa de potencial eletrostático. Em relação aos triazois, as análises dos dados eletroquímicos mostraram que TR-2 apresentou a maior eficiência de inibição (95,12% para LPP e 83,55% para EIE). A análise isotérmica mostrou que TR-s apresentaram a maior constante de adsorção, assim como a menor energia de adsorção de Gibbs. Considerando as simulações de Monte Carlo, a molécula de TR-2 é adsorvida na superfície do eletrodo pelo grupo triazol, o que favorece a criação de um filme estável sobre o eletrodo. A análise eletrônica dos cálculos DFT mostra que a polaridade e as energias LUMO das moléculas desempenham um papel importante na criação de um complexo de coordenação entre a superfície do eletrodo e a molécula inibidora de TR-2.Este documento está disponível online com base na Portaria no 348, de 08 de dezembro de 2022, disponível em: https://biblioteca.ufc.br/wp-content/uploads/2022/12/portaria348-2022.pdf, que autoriza a digitalização e a disponibilização no Repositório Institucional (RI) da coleção retrospectiva de TCC, dissertações e teses da UFC, sem o termo de anuência prévia dos autores. Em caso de trabalhos com pedidos de patente e/ou de embargo, cabe, exclusivamente, ao autor(a) solicitar a restrição de acesso ou retirada de seu trabalho do RI, mediante apresentação de documento comprobatório à Direção do Sistema de Bibliotecas.Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspectsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisInibidores de corrosãoCobreImidazolTriazóisTeoria da densidade funcionalCorrosion inhibitorsCopperImidazoleTriazolesDensity functional theoryCNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCorcid logo https://orcid.org/0000-0002-9693-3811https://lattes.cnpq.br/7223918620158873https://orcid.org/0000-0002-1613-4797http://lattes.cnpq.br/29696896469615862025ORIGINAL2023_tese_sncosta.pdf2023_tese_sncosta.pdfTrabalho corrigidoapplication/pdf7596033http://repositorio.ufc.br/bitstream/riufc/80746/3/2023_tese_sncosta.pdf4402896536946ae790172dba9b676b91MD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/80746/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54riufc/807462025-05-06 14:19:37.231oai:repositorio.ufc.br:riufc/80746Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2025-05-06T17:19:37Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false
dc.title.pt_BR.fl_str_mv Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects
title Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects
spellingShingle Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects
Costa, Stefane Nunes
CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
Inibidores de corrosão
Cobre
Imidazol
Triazóis
Teoria da densidade funcional
Corrosion inhibitors
Copper
Imidazole
Triazoles
Density functional theory
title_short Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects
title_full Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects
title_fullStr Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects
title_full_unstemmed Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects
title_sort Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects
author Costa, Stefane Nunes
author_facet Costa, Stefane Nunes
author_role author
dc.contributor.author.fl_str_mv Costa, Stefane Nunes
dc.contributor.advisor1.fl_str_mv Lima Neto, Pedro de
contributor_str_mv Lima Neto, Pedro de
dc.subject.cnpq.fl_str_mv CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
topic CNPQ::ENGENHARIAS::ENGENHARIA DE MATERIAIS E METALURGICA
Inibidores de corrosão
Cobre
Imidazol
Triazóis
Teoria da densidade funcional
Corrosion inhibitors
Copper
Imidazole
Triazoles
Density functional theory
dc.subject.ptbr.pt_BR.fl_str_mv Inibidores de corrosão
Cobre
Imidazol
Triazóis
Teoria da densidade funcional
dc.subject.en.pt_BR.fl_str_mv Corrosion inhibitors
Copper
Imidazole
Triazoles
Density functional theory
description This work presents the application of modified azole molecules (imidazole and triazole) for application as a corrosion inhibitor for copper electrode in sulfuric acid 0.5 mol L-1. The compounds to be evaluated are: 4-(1H-imidazole-1-yl)benzaldehyde (IB), 4-(1H-imidazole-1-yl)aniline (IA), [4-(1H-imidazole-1-yl)-Phenyl]Methanol (IFM), 4-(Imidazole-1-yl)-Phenol (IF), 1-phenyl-2-(1H-1,2,4-triazole-1-yl)ethanone (TR-1), 1-(2,4-difluorophenyl)-2(1H-1,2,4-triazole-1-yl)ethanone (TR-2), 1-(4-chlorophenyl)-2-(1H-1, 2, 4-triazole-1-yl)ethanone (TR-3) and 1-(p-toluyl)-2-(1H-1,2,4-triazole-1-yl)ethanone (TR-4). Electrochemical techniques such as Open Circuit Potential (OCP), Linear Potentiodynamic Polarization (LPP) and Electrochemical Impedance Spectroscopy (EIS) were performed, as well as chemical modeling was applied using Monte Carlo and DFT techniques. All imidazole derivatives inhibited copper corrosion, and the inhibition values were between 80 and 94%. A good correlation between the values of inhibition efficiency and Gibbs adsorption energy were found, showing that the more negative Gibbs energy, the better interaction of the corrosion inhibitor with the copper surface, decreasing its corrosion in 0.5 mol L-1 medium H2SO4. DFT calculations showed differences in the electronic and reactivity properties of imidazole and other molecules. The higher corrosion inhibition of imidazole derivatives can be explained by the electrophilic characteristic of these molecules, since there are empty molecular orbitals scattered mainly in benzene rings that transfer metal-to-binder charge, receiving electron density from the copper surface. By backbonding, according to the Fukui electronic functions and the potential charge distribution considering the electrostatic potential map. Regarding the triazoles, the analysis of the electrochemical data showed that TR-2 presented the highest inhibition efficiency (95.12% for LPP and 83.55% for EIE). The isothermal analysis showed that TR-s presented the highest adsorption constant, as well as the lowest Gibbs adsorption energy. Considering the Monte Carlo simulations, the TR-2 molecule is adsorbed on the electrode surface by the triazole group, which favors the creation of a stable film on the electrode. Electronic analysis of the DFT calculations shows that the polarity and LUMO energies of the molecules play an important role in creating a coordination complex between the electrode surface and the TR-2 inhibitor molecule. Keywords: corrosion inhibitors, imidazole, triazole, copper, DFT
publishDate 2023
dc.date.issued.fl_str_mv 2023
dc.date.accessioned.fl_str_mv 2025-05-06T17:19:36Z
dc.date.available.fl_str_mv 2025-05-06T17:19:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COSTA, Stefane Nunes. Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects. 2023. 89 f. Tese (Doutorado em Engenharia e Ciência de Materiais) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
dc.identifier.uri.fl_str_mv http://repositorio.ufc.br/handle/riufc/80746
identifier_str_mv COSTA, Stefane Nunes. Use of chemically modified azoles for use in copper corrosion inhibitors in acid medium: theoretical and experimental aspects. 2023. 89 f. Tese (Doutorado em Engenharia e Ciência de Materiais) - Centro de Tecnologia, Universidade Federal do Ceará, Fortaleza, 2023.
url http://repositorio.ufc.br/handle/riufc/80746
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal do Ceará (UFC)
instname:Universidade Federal do Ceará (UFC)
instacron:UFC
instname_str Universidade Federal do Ceará (UFC)
instacron_str UFC
institution UFC
reponame_str Repositório Institucional da Universidade Federal do Ceará (UFC)
collection Repositório Institucional da Universidade Federal do Ceará (UFC)
bitstream.url.fl_str_mv http://repositorio.ufc.br/bitstream/riufc/80746/3/2023_tese_sncosta.pdf
http://repositorio.ufc.br/bitstream/riufc/80746/4/license.txt
bitstream.checksum.fl_str_mv 4402896536946ae790172dba9b676b91
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)
repository.mail.fl_str_mv bu@ufc.br || repositorio@ufc.br
_version_ 1847792706758115328