QoS predictability in V2X communication with machine learning
| Main Author: | |
|---|---|
| Publication Date: | 2020 |
| Other Authors: | , , , |
| Format: | Conference object |
| Language: | eng |
| Source: | Repositório Institucional da Universidade Federal do Ceará (UFC) |
| Download full: | http://www.repositorio.ufc.br/handle/riufc/69588 |
Summary: | An important use case in fifth generation systems are vehicular applications, where, reliability and low latency are the main requirements. In order to determine if a vehicular application can be used one can apply machine learning (ML) tools to determine if these constraints are met, which open questions such as “which data is available”, “which features to use”, “the quality of this prediction”, etc. In this paper we address some aspects of predicting quality-of-service (QoS) in a cellular vehicular-to-everything scenario, where we employ supervised learning as well as the autoregressive integrated moving average filter to predict if a packet can be delivered within a desired latency window. Particularly, we are interested in the reliability of this prediction, including predicting if a packet generated some time ahead will be delivered in time. Such information is essential when asserting that a vehicular application can indeed be employed safely. We show via simulation results that ML can be used as a prediction tool in vehicular applications. For instance, QoS levels can be predicted two seconds ahead with 85 % reliability. |
| id |
UFC-7_1cbb230fedea769812da0bacf58d0a1a |
|---|---|
| oai_identifier_str |
oai:repositorio.ufc.br:riufc/69588 |
| network_acronym_str |
UFC-7 |
| network_name_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| repository_id_str |
|
| spelling |
Moreira, Darlan CavalcanteGuerreiro, Igor MoácoSun, WanluCavalcante, Charles CasimiroSousa, Diego Aguiar2022-11-29T13:35:59Z2022-11-29T13:35:59Z2020CAVALCANTE, C. C. et al. QoS predictability in V2X communication with machine learning. In: VEHICULAR TECHNOLOGY CONFERENCE, 91., 2020, Antuérpia. Anais... Antuérpia: IEEE, 2020. p. 1-5.http://www.repositorio.ufc.br/handle/riufc/69588An important use case in fifth generation systems are vehicular applications, where, reliability and low latency are the main requirements. In order to determine if a vehicular application can be used one can apply machine learning (ML) tools to determine if these constraints are met, which open questions such as “which data is available”, “which features to use”, “the quality of this prediction”, etc. In this paper we address some aspects of predicting quality-of-service (QoS) in a cellular vehicular-to-everything scenario, where we employ supervised learning as well as the autoregressive integrated moving average filter to predict if a packet can be delivered within a desired latency window. Particularly, we are interested in the reliability of this prediction, including predicting if a packet generated some time ahead will be delivered in time. Such information is essential when asserting that a vehicular application can indeed be employed safely. We show via simulation results that ML can be used as a prediction tool in vehicular applications. For instance, QoS levels can be predicted two seconds ahead with 85 % reliability.Vehicular Technology ConferenceC-V2XQoS predictionMachine learningQoS predictability in V2X communication with machine learninginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectengreponame:Repositório Institucional da Universidade Federal do Ceará (UFC)instname:Universidade Federal do Ceará (UFC)instacron:UFCinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.ufc.br/bitstream/riufc/69588/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52ORIGINAL2020_eve_cccavalcante.pdf2020_eve_cccavalcante.pdfapplication/pdf259692http://repositorio.ufc.br/bitstream/riufc/69588/1/2020_eve_cccavalcante.pdff521e8729d16d592f44ea184160f3191MD51riufc/695882022-11-29 10:35:59.707oai:repositorio.ufc.br:riufc/69588Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttp://www.repositorio.ufc.br/ri-oai/requestbu@ufc.br || repositorio@ufc.bropendoar:2022-11-29T13:35:59Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC)false |
| dc.title.pt_BR.fl_str_mv |
QoS predictability in V2X communication with machine learning |
| title |
QoS predictability in V2X communication with machine learning |
| spellingShingle |
QoS predictability in V2X communication with machine learning Moreira, Darlan Cavalcante C-V2X QoS prediction Machine learning |
| title_short |
QoS predictability in V2X communication with machine learning |
| title_full |
QoS predictability in V2X communication with machine learning |
| title_fullStr |
QoS predictability in V2X communication with machine learning |
| title_full_unstemmed |
QoS predictability in V2X communication with machine learning |
| title_sort |
QoS predictability in V2X communication with machine learning |
| author |
Moreira, Darlan Cavalcante |
| author_facet |
Moreira, Darlan Cavalcante Guerreiro, Igor Moáco Sun, Wanlu Cavalcante, Charles Casimiro Sousa, Diego Aguiar |
| author_role |
author |
| author2 |
Guerreiro, Igor Moáco Sun, Wanlu Cavalcante, Charles Casimiro Sousa, Diego Aguiar |
| author2_role |
author author author author |
| dc.contributor.author.fl_str_mv |
Moreira, Darlan Cavalcante Guerreiro, Igor Moáco Sun, Wanlu Cavalcante, Charles Casimiro Sousa, Diego Aguiar |
| dc.subject.por.fl_str_mv |
C-V2X QoS prediction Machine learning |
| topic |
C-V2X QoS prediction Machine learning |
| description |
An important use case in fifth generation systems are vehicular applications, where, reliability and low latency are the main requirements. In order to determine if a vehicular application can be used one can apply machine learning (ML) tools to determine if these constraints are met, which open questions such as “which data is available”, “which features to use”, “the quality of this prediction”, etc. In this paper we address some aspects of predicting quality-of-service (QoS) in a cellular vehicular-to-everything scenario, where we employ supervised learning as well as the autoregressive integrated moving average filter to predict if a packet can be delivered within a desired latency window. Particularly, we are interested in the reliability of this prediction, including predicting if a packet generated some time ahead will be delivered in time. Such information is essential when asserting that a vehicular application can indeed be employed safely. We show via simulation results that ML can be used as a prediction tool in vehicular applications. For instance, QoS levels can be predicted two seconds ahead with 85 % reliability. |
| publishDate |
2020 |
| dc.date.issued.fl_str_mv |
2020 |
| dc.date.accessioned.fl_str_mv |
2022-11-29T13:35:59Z |
| dc.date.available.fl_str_mv |
2022-11-29T13:35:59Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
CAVALCANTE, C. C. et al. QoS predictability in V2X communication with machine learning. In: VEHICULAR TECHNOLOGY CONFERENCE, 91., 2020, Antuérpia. Anais... Antuérpia: IEEE, 2020. p. 1-5. |
| dc.identifier.uri.fl_str_mv |
http://www.repositorio.ufc.br/handle/riufc/69588 |
| identifier_str_mv |
CAVALCANTE, C. C. et al. QoS predictability in V2X communication with machine learning. In: VEHICULAR TECHNOLOGY CONFERENCE, 91., 2020, Antuérpia. Anais... Antuérpia: IEEE, 2020. p. 1-5. |
| url |
http://www.repositorio.ufc.br/handle/riufc/69588 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Vehicular Technology Conference |
| publisher.none.fl_str_mv |
Vehicular Technology Conference |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal do Ceará (UFC) instname:Universidade Federal do Ceará (UFC) instacron:UFC |
| instname_str |
Universidade Federal do Ceará (UFC) |
| instacron_str |
UFC |
| institution |
UFC |
| reponame_str |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| collection |
Repositório Institucional da Universidade Federal do Ceará (UFC) |
| bitstream.url.fl_str_mv |
http://repositorio.ufc.br/bitstream/riufc/69588/2/license.txt http://repositorio.ufc.br/bitstream/riufc/69588/1/2020_eve_cccavalcante.pdf |
| bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 f521e8729d16d592f44ea184160f3191 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal do Ceará (UFC) - Universidade Federal do Ceará (UFC) |
| repository.mail.fl_str_mv |
bu@ufc.br || repositorio@ufc.br |
| _version_ |
1847792045737902080 |