Avaliação das tecnologias e potencial econômico para produção de ácido bio succinico
| Main Author: | |
|---|---|
| Publication Date: | 2024 |
| Format: | Doctoral thesis |
| Language: | por |
| Source: | Repositório Institucional da UFBA |
| Download full: | https://repositorio.ufba.br/handle/ri/43072 |
Summary: | O ácido succínico (SA), também conhecido por ácido butanodióico, tem sido usado como matéria-prima nas indústrias alimentícia e farmacêutica além da sua potencial utilização na produção de materiais poliméricos biodegradáveis como o succinato de polibuteno, poliamidas e solventes verde, além de plastificantes, tintas e vernizes. Apesar da rota petroquímica ser responsável por cerca de 97% da produção total do ácido succínico atual, a produção através de utilização de biomassa como matéria- prima tornou-se competitiva frente a oscilações do preço do petróleo e a preocupações mundiais acerca do uso de matéria-prima de origem fóssil e seu impacto na emissão de gases do efeito estufa. Nesta pesquisa foram avaliadas as rotas de obtenção do ácido biosuccínico a partir da biomassa, passando pelo pré-tratamento necessário para tornar o material disponível à fermentação, às tecnologias de síntese de BioSA utilizando diversos microrganismos e à proposição de um processo de separação e purificação para obtenção do produto com uma pureza adequada. Simultaneamente, o trabalho avalia o mercado mundial, analisando oportunidades e ameaças para as rotas de produção do BioSA como matéria-prima substituta para a produção de 1,4 butanodiol (BDO) e succinato de polibutileno (PBS), e como substituto do anidrido maleico, indicando sua vantagem competitiva e principais gargalos para produção. Vários microrganismos têm sido estudados e analisados na produção do BioSA. Escherichia coli e Actinobacillus succinogenes apresentam o maior potencial para o processo de fermentação, sendo os microrganismos com maior número de patentes e trabalhos realizados em pesquisas e, consequentemente, deve concentrar nossos estudos acerca das condições ótimas para aumento do rendimento e produtividade do BioSA. Os principais competidores que operam no mercado global de ácido biossuccínico incluem BioAmber, Reverdia e Succinity, e outras empresas que investem em pesquisa e desenvolvimento de novas tecnologias para a produção de ácido biossuccínico. Espera-se que o mercado continue prosperando nos próximos anos, com previsões de crescimento de aproximadamente 6,0% ao ano até 2027. |
| id |
UFBA-2_d43b194c34c0221bc58e19b5ce662f30 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufba.br:ri/43072 |
| network_acronym_str |
UFBA-2 |
| network_name_str |
Repositório Institucional da UFBA |
| repository_id_str |
1932 |
| spelling |
2025-09-29T16:46:12Z2025-09-202025-09-29T16:46:12Z2024-04-10https://repositorio.ufba.br/handle/ri/43072O ácido succínico (SA), também conhecido por ácido butanodióico, tem sido usado como matéria-prima nas indústrias alimentícia e farmacêutica além da sua potencial utilização na produção de materiais poliméricos biodegradáveis como o succinato de polibuteno, poliamidas e solventes verde, além de plastificantes, tintas e vernizes. Apesar da rota petroquímica ser responsável por cerca de 97% da produção total do ácido succínico atual, a produção através de utilização de biomassa como matéria- prima tornou-se competitiva frente a oscilações do preço do petróleo e a preocupações mundiais acerca do uso de matéria-prima de origem fóssil e seu impacto na emissão de gases do efeito estufa. Nesta pesquisa foram avaliadas as rotas de obtenção do ácido biosuccínico a partir da biomassa, passando pelo pré-tratamento necessário para tornar o material disponível à fermentação, às tecnologias de síntese de BioSA utilizando diversos microrganismos e à proposição de um processo de separação e purificação para obtenção do produto com uma pureza adequada. Simultaneamente, o trabalho avalia o mercado mundial, analisando oportunidades e ameaças para as rotas de produção do BioSA como matéria-prima substituta para a produção de 1,4 butanodiol (BDO) e succinato de polibutileno (PBS), e como substituto do anidrido maleico, indicando sua vantagem competitiva e principais gargalos para produção. Vários microrganismos têm sido estudados e analisados na produção do BioSA. Escherichia coli e Actinobacillus succinogenes apresentam o maior potencial para o processo de fermentação, sendo os microrganismos com maior número de patentes e trabalhos realizados em pesquisas e, consequentemente, deve concentrar nossos estudos acerca das condições ótimas para aumento do rendimento e produtividade do BioSA. Os principais competidores que operam no mercado global de ácido biossuccínico incluem BioAmber, Reverdia e Succinity, e outras empresas que investem em pesquisa e desenvolvimento de novas tecnologias para a produção de ácido biossuccínico. Espera-se que o mercado continue prosperando nos próximos anos, com previsões de crescimento de aproximadamente 6,0% ao ano até 2027.Succinic acid (SA), also known as butanedioic acid, has been used as a raw material in the food and pharmaceutical industries, in addition to its potential utilization in the production of biodegradable polymeric materials such as polybutene succinate, polyamides, and green solvents, as well as plasticizers, paints, and varnishes. Despite the petrochemical route currently accounting for about 97% of the total production of succinic acid, production using biomass as a feedstock has become competitive in light of petroleum price fluctuations and global concerns about the use of fossil-based raw materials and their impact on greenhouse gas emissions. This research evaluated the routes for obtaining biosuccinic acid from biomass, including the necessary pretreatment to make the material available for fermentation, the synthesis technologies of BioSA using various microorganisms, and the proposition of a separation and purification process to obtain the product with adequate purity. Simultaneously, the study assesses the global market, analyzing opportunities and threats for BioSA production routes as a substitute raw material for the production of 1,4-butanediol (BDO) and polybutylene succinate (PBS), and as a substitute for maleic anhydride, indicating its competitive advantage and key production bottlenecks. Several microorganisms have been studied and analyzed in BioSA production. Escherichia coli and Actinobacillus succinogenes show the greatest potential for the fermentation process, being the microorganisms with the highest number of patents and research works conducted, and therefore, they should be the focus of our studies regarding optimal conditions to increase BioSA yield and productivity. The main competitors operating in the global biosuccinic acid market include BioAmber, Reverdia, and Succinity, as well as other companies investing in research and development of new technologies for biosuccinic acid production. It is expected that the market will continue to thrive in the coming years, with growth forecasts of approximately 6,0% per year until 2027.porUniversidade Federal da BahiaPrograma de Pós-Graduação em Engenharia Quimica (PPEQ) UFBABrasilEscola PolitécnicaBiomassBio-succinic acidBiorefineryMarketEscherichia coliS. cerevisiaeActinobacillus succinogenesCNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA::PROCESSOS BIOQUIMICOSBiomassaAcido BiosuccínicoBiorefinariasMercadoS. cerevisiaeEscherichia coliActinobacillus succinogenesAvaliação das tecnologias e potencial econômico para produção de ácido bio succinicoAssessment of technologies and economic potential for bio-succinic acid productionDoutoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionPontes, Luis Antônio Magalhãeshttp://lattes.cnpq.br/2865282329757428Campos, Leila Maria AguileraPerpétuo, Élen AquinoMoreira, Icaro Thiago AndradeLobato, Ana Katerine de Carvalho LimaPontes, Luiz Antônio Magalhães0000-0003-2410-1896https://wwws.cnpq.br/cvlattesweb/PKG_MENU.menu?f_cod=D1F22AB3D7D24C86021A43C28884B33E#Silva, Diniz Alves de Sant'AnaAGREN, R.; OTERO, J. M.; NIELSEN, J. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. Journal of Industrial Microbiology & Biotechnology, v. 40, n. 7, p. 735-747, abr. 2013. Disponivel em: https://doi.org/10.1007/s10295-013-1269-3. Acesso em: 4 fev. 2024. AHN, J. H.; JANG, Y; LEE, S. Y. Production of succinic acid by metabolically engineered microorganisms. Current Opinion in Biotechnology, v. 42, p. 54-66, dez. 2016. Disponivel em: https://doi.org/10.1016/j.copbio.2016.02.034. Acesso em: 17 mar. 2024. AKHTAR, J.; IDRIS, A. Oil palm empty fruit bunches a promising substrate for succinic acid production via simultaneous saccharification and fermentation. Renewable Energy, v. 114, p. 917-923, dez. 2017. Disponivel em: https://doi.org/10.1016/j.renene.2017.07.113. Acesso em: 4 fev. 2024. ALEXANDRI, M. et al. Downstream separation and purification of succinic acid from fermentation broths using spent sulphite liquor as feedstock. Separation and Purification Technology, v. 209, p. 666-675, jan. 2019. Disponivel em: https://doi.org/10.1016/j.seppur.2018.08.061. Acesso em: 3 fev. 2024. ALEXANDRI, M. et al. Succinic acid production by immobilized cultures using spent sulphite liquor as fermentation medium. Bioresource Technology, v. 238, p. 214-222, ago. 2017. Disponivel em: https://doi.org/10.1016/j.biortech.2017.03.132. Acesso em: 24 fev. 2024. AMIRI, H.; KARIMI, K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. Bioresource Technology, v. 270, p. 702-721, dez. 2018. Disponivel em: https://doi.org/10.1016/j.biortech.2018.08.117. Acesso em: 4 fev. 2024. ANDRADE, F. R. M. Bioproducao de acido succinico a partir de hidrolisado hemicelulosico de bagaco de sorgo sacarino [Sorghum bicolor (L.) Moench]. 2017. Dissertacao (Mestrado em Ciencias) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017. Disponivel em: http://www.ladebio.org.br/download/bioproducao-de-acido-succinico-a-partir-de-bagaco-de-sorgo-sacarino.pdf. Acesso em: 4 fev. 2024. ANTUNES, E. C. E. S. Recuperacao de acido succinico atraves de extracao liquido-liquido usando contactor de membrana. 2018. Dissertacao (Mestrado em Engenharia Quimica) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2018. Disponivel em: https://doi.org/10.1016/j.bej.2016.04.005. Acesso em: 4 fev. 2024. ARAUJO, M. R. et al. Desenvolvimento de plataformas tecnologicas: o caso das plataformas quimicas, In: CONGRESSO LATINO-IBEROAMERICANO DE GESTAO DA TECNOLOGIA. ALTEC, 16., 2015; Porto Alegre. Anais eletronico [...] Porto 135 Alegre: NITEC, 2015. Disponivel em: https://altec2015.nitec.co/altec/papers/608.pdf. Acesso em: 2 fev. 2024. ARIAS, A.; FEIJOO, G.; MOREIRA, M. T. Biorefineries as a driver for sustainability: key aspects, actual development and future prospects. Journal of Cleaner Production, v. 418, p. 137925, jul. 2023. Disponivel em: https://doi.org/10.1016/j.jclepro.2023.137925. Acesso em: 3 fev. 2024. ASINA, F. N. U. et al. Microbial treatment of industrial lignin: successes, problems and challenges. Renewable and Sustainable Energy Reviews, v. 77, p. 1179-1205, set. 2017. Disponivel em: https://doi.org/10.1016/j.rser.2017.03.098. Acesso em: fev. 2024. BABAEI, M. et al. Engineering oleaginous yeast as the host for fermentative succinic acid production from glucose. Frontiers in Bioengineering and Biotechnology, v. 7, nov. 2019a. Disponivel em: https://doi.org/10.3389/fbioe.2019.00361. Acesso em: 4 fev. 2024. BABAEI, M. et al. Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochemical Engineering Journal, v. 147, p. 136-145, jul. 2019b. Disponivel em: https://doi.org/10.1016/j.bej.2019.04.012. Acesso em: 4 fev. 2024. BAI, B. et al. Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli. Bioresource Technology, v. 185, p. 56-61, jun. 2015. Disponivel em: https://doi.org/10.1016/j.biortech.2015.02.081. Acesso em: 4 fev. 2024. BAO, H. et al. Succinic acid production from hemicellulose hydrolysate by an Escherichia coli mutant obtained by atmospheric and room temperature plasma and adaptive evolution. Enzyme and Microbial Technology, v.66, p.10-15, nov. 2014. Disponivel em: https://doi.org/10.1016/j.enzmictec.2014.04.017. Acesso em: 23 fev. 2024. BARBOSA, L.C. A. et al. Determinacao da relacao siringila/guaiacila da lignina em madeiras de eucalipto por pirolise acoplada a cromatografia gasosa e espectrometria de massas (PI CG/EM). Quimica Nova, v. 31, n. 8, p. 2035-2041, 2008. Disponivel em: https://doi.org/10.1590/s0100-40422008000800023. Acesso em: 3 fev. 2024. BHARATHIRAJA, B. et al. Biochemical conversion of biodiesel by-product into malic acid: a way towards sustainability. Science of the Total Environment, v. 709, p. 136206, mar. 2020. Disponivel em: https://doi.org/10.1016/j.scitotenv.2019.136206 Acesso em: 3 fev. 2024. BIOAMBER INC. Bioamber and CJ CheilJedang Plan JV for succinic acid production in Asia. Renewable Carbon News, 16 jan. 2017. Disponivel em: https://renewable-carbon.eu/news/bioamber-and-cj-cheiljedang-plan-jv-for-succinic-acid-production-in-asia/. Acesso em: 4 fev. 2024. 136 BORGES, E. R.; PEREIRA, N. Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. Journal of Industrial Microbiology & Biotechnology, v. 38, n. 8, p. 1001-1011, ago. 2011. Disponivel em: https://doi.org/10.1007/s10295-010-0874-7. Acesso em: 4 fev. 2024. BRADFIELD, M. F. A. et al. Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnology for Biofuels, v. 8, n. 182, nov. 2015. Disponivel em: https://doi.org/10.1186/s13068-015-0363-3. Acesso em: 4 fev. 2024. BUKHARI, N. A. et al. Compatibility of utilising nitrogen-rich oil palm trunk sap for succinic acid fermentation by Actinobacillus succinogenes 130Z. Bioresource Technology, v. 293, p. 122085, dez. 2019. Disponivel em: https://doi.org/10.1016/j.biortech.2019.122085. Acesso em: 23 fev. 2024. BUKHARI, N. A. et al. Oil palm trunk biomass pretreatment with oxalic acid and its effect on enzymatic digestibility and fermentability. Materials Today: Proceedings, v. 42, n. 1, p. 119-123, 2021. Disponivel em: https://doi.org/10.1016/j.matpr.2020.10.267. Acesso em: 4 fev. 2024. BURGARD, A. et al. Development of a commercial scale process for production of 1,4-butanediol from sugar. Current Opinion in Biotechnology, v. 42, p. 118-125, dez. 2016. Disponivel em: https://doi.org/10.1016/j.copbio.2016.04.016. Acesso em: 4 fev. 2024. CAO, W. et al. Succinic acid biosynthesis from cane molasses under low pH by Actinobacillus succinogenes immobilized in luffa sponge matrices. Bioresource Technology, v. 268, p. 45-51, nov. 2018. Disponivel em: https://doi.org/10.1016/j.biortech.2018.06.075. Acesso em: 4 fev. 2024. CARDOSO, A. L. C. Producao de celulases pelo FSDE16 e hidrolise enzimatica do bagaco de cana-de-acucar. 2017. Trabalho de Conclusao de Curso (Bacharelado em Engenharia Quimica) . Universidade Federal da Paraiba, Joao Pessoa, 2017. Disponivel em: https://repositorio.ufpb.br/jspui/bitstream/123456789/13556/1/ALCC15062018.pdf. Acesso em: 4 fev. 2024. CARVALHO, M.; ROCA, C.; REIS, M. A. M. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods. Bioresource Technology, v. 218, p. 491-497, out. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2016.06.140. Acesso em: 15 fev. 2024. CHALEEWONG, T. et al. Kinetic modeling of succinate production from glucose and xylose by metabolically engineered Escherichia coli KJ12201. Biochemical Engineering Journal, v. 185, 108487, jun. 2022. Disponivel em: https://doi.org/10.1016/j.bej.2022.108487. Acesso em: 17 mar. 2024. 137 CHEMANALYST. Decode the future of succinic acid. 2023a Disponivel em: https://www.chemanalyst.com/industry-report/succinic-acid-market-2899. Acesso em: 25 jan. 2024. CHEMANALYST. Succinic acid price trend and forecast. 2023b .Disponivel em: https://www.chemanalyst.com/Pricing-data/succinic-acid-1270. Acesso em: 25 jan. 2024. CHEN, C. et al.Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111. Bioresource Technology, v.163, p. 100-105, jul. 2014. Disponivel em: https://doi.org/10.1016/j.biortech.2014.04.020. Acesso em: 23 fev. 2024. CHEN, J. et al. Novel biorefining method for succinic acid processed from sugarcane bagasse. Bioresource Technology, v. 324, p. 124615, mar. 2021. Disponivel em: https://doi.org/10.1016/j.biortech.2020.124615. Acesso em: 4 fev. 2024. CHEN, K. et al. Succinic acid production from enzymatic hydrolysate of sake lees using Actinobacillus succinogenes 130Z. Enzyme and Microbial Technology, v. 47, n. 5, p. 236-240, out. 2010. Disponivel em: https://doi.org/10.1016/j.enzmictec.2010.06.011. Acesso em: 23 fev. 2024 CHEN, K. Q. et al. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber. Bioresource Technology, v. 102, n. 2, p. 1704-1708, jan. 2011. Disponivel em: https://doi.org/10.1016/j.biortech.2010.08.011. Acesso em: 4 fev. 2024. CHEN, P. C. et al. Preparation of A. succinogenes immobilized microfiber membrane for repeated production of succinic acid. Enzyme and Microbial Technology, v. 98, p. 34-42, mar. 2017. Disponivel em: https://doi.org/10.1016/j.enzmictec.2016.12.004. Acesso em: 4 fev. 2024. CHEN, P.; TAO, S.; ZHENG, P. Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresource Technology, v. 211, p. 406-413, jul. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2016.03.108. Acesso em: 4 fev. 2024. CHEN, X.; ZHOU, Y.; ZHANG, D. Engineering Corynebacterium crenatumfor enhancing succinic acid production. Journal of Food Biochemistry, v. 42, n. 6, p. e12645, 11 set. 2018. Disponivel em: https://doi.org/10.1111/jfbc.12645. Acesso em: 13 fev. 2024. CHENG, K. et al. Biotechnological production of succinic acid: current state and perspectives. Biofuels, Bioproducts and Biorefining, v. 6, n. 3, p. 302-318, maio/jun. 2012. Disponivel em: https://doi.org/10.1002/bbb.1327. Acesso em: 4 fev. 2024. CHIANG, C. J. et al. Deciphering glutamate and aspartate metabolism to improve production of succinate in Escherichia coli. Journal of the Taiwan Institute of 138 Chemical Engineers, v. 136, p. 104417, jul. 2022. Disponivel em: https://doi.org/10.1016/j.jtice.2022.104417. Acesso em: 4 fev. 2024. CHOI, S. et al. Biorefineries for the production of top building block chemicals and their derivatives. Metabolic Engineering, v. 28, p. 223-239, mar. 2015. Disponivel em: https://doi.org/10.1016/j.ymben.2014.12.007. Acesso em: 3 fev. 2024. CHOI, S. et al. Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification. Biotechnology and Bioengineering, v. 113, n. 10, p. 2168-2177, abr. 2016. Disponivel em: https://doi.org/10.1002/bit.25988. Acesso em: 24 fev. 2024. CHOUDHARY, H.; NISHIMURA, S.; EBITANI, K. Metal-free oxidative synthesis of succinic acid from biomass-derived furan compounds using a solid acid catalyst with hydrogen peroxide. Applied Catalysis A: General, v. 458, p. 55-62, maio 2013. Disponivel em: https://doi.org/10.1016/j.apcata.2013.03.033. Acesso em: 3 fev. 2024. CIMINI, D. et al. Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. Bioresource Technology, v. 222, p. 355-360, dez. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2016.10.004. Acesso em: 3 fev. 2024. CLARK, J. H. et al. Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chemistry, v. 8, n. 10, p. 853-860, 2006. Disponivel em: https://doi.org/10.1039/B604483M. Acesso em: 3 fev. 2024. COK, B. et al. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels, Bioprod Biorefining, v. 8, n. 1, 16-29, jan. 2014. Disponivel em: https://doi.org/10.1002/bbb.1427. Acesso em: 3 fev. 2024. CORONA-GONZALEZ, R. I. et al. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor. Bioresource Technology, v. 205, p. 15-23, abr. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2015.12.081. Acesso em: 4 fev. 2024. CUI, Z. et al. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metabolic Engineering, v. 42, p. 126-133, jul. 2017. Disponivel em: https://doi.org/10.1016/j.ymben.2017.06.007. Acesso em: 15 fev. 2024. DABROS, T. M. H. et al. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, v. 68, p. 268-309, set. 2018. Disponivel em: https://doi.org/10.1016/j.pecs.2018.05.002. Acesso em: 3 fev. 2024. DAI, Z. et al. Bio ]based succinic acid: an overview of strain development, substrate utilization, and downstream purification. Biofuels, Bioproducts and Biorefining, v. 139 14, n. 5, p. 965-985, nov. 2019. Disponivel em: https://doi.org/10.1002/bbb.2063. Acesso em: 22 fev. 2024. DATA BRIDGE MARKET RESEARCH. Global succinic acid market: industry trends and forecast to 2029. 2021. Disponivel em: https://www.databridgemarketresearch.com/reports/global-succinic-acid-market. Acesso em: 30 set. 2023. DEN, W. et al. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Frontiers in Chemistry, v. 6, p. 141, 2018. Disponivel em: https://doi.org/10.3389/fchem.2018.00141. Acesso em: 27 ago. 2020. DESSIE, W. et al. Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Applied Microbiology and Biotechnology, v. 102, n. 23, p. 9893-9910, set. 2018a. Disponivel em: https://doi.org/10.1007/s00253-018-9379-5. Acesso em: 4 fev. 2024. DESSIE, W. et al. Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation. Bioresource Technology, v. 247, p. 1177-1180, jan. 2018b. Disponivel em: https://doi.org/10.1016/j.biortech.2017.08.171. Acesso em: 4 fev. 2024. DESSIE, W. et al. Towards the development of efficient, economic and environmentally friendly downstream processing for bio-based succinic acid. Environmental Technology & Innovation, v. 32, p. 103243, jun. 2023. Disponivel em: https://doi.org/10.1016/j.eti.2023.103243. Acesso em: 4 fev. 2024. DHESKALI, E.; KOUTINAS, A. A.; KOOKOS, I. K. A simple and efficient model for calculating fixed capital investment and utilities consumption of large-scale biotransformation processes. Biochemical Engineering Journal, v. 154, p. 107462.107462, fev. 2020. Disponivel em: https://doi.org/10.1016/j.bej.2019.107462 DONG, W. et al. Characterization of a ƒÀ-glucosidase from Paenibacillus species and its application for succinic acid production from sugarcane bagasse hydrolysate. Bioresource Technology, v. 241, p. 309-316, out. 2017. Disponivel em: https://doi.org/10.1016/j.biortech.2017.05.141. Acesso em: 23 fev. 2024. DORADO, M. P. et al. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid. Journal of Biotechnology, v. 143, n. 1, p. 51-59, ago. 2009. Disponivel em: https://doi.org/10.1016/j.jbiotec.2009.06.009. Acesso em: 23 fev. 2024. DUAN, Y. et al. Sustainable biorefinery approaches towards circular economy for conversion of biowaste to value added materials and future perspectives. Fuel, v. 325, p. 124846, out. 2022. Disponivel em: https://doi.org/10.1016/j.fuel.2022.124846. Acesso em: 3 fev. 2024. 140 E4TECH. From the Sugar Platform to biofuels and biochemicals: final report for the European Comission Directorate-Geberal Energy. European Comission, abr. 2015. Disponivel em: https://www.euroconsulting.be/upload/news/documents/20150422055455_EC_Sugar_Platform_final_report.pdf. Acesso em: 4 fev. 2024. EFE, C.; VAN DER WIELEN, L. A. M.; STRAATHOF, A. J. J. Techno-economic analysis of succinic acid production using adsorption from fermentation medium. Biomass and Bioenergy, v. 56, p. 479-492, set. 2013. Disponivel em: https://doi.org/10.1016/j.biombioe.2013.06.002. Acesso em: 4 fev. 2024. ELEKEIROZ. Relatorio anual de sustentabilidade 2011. Sao Paulo, 2012 ERCOLE, A. et al. Continuous succinic acid production by immobilized cells of Actinobacillus succinogenes in a fluidized bed reactor: entrapment in alginate beads. Biochemical Engineering Journal, v. 169, p. 107968, maio 2021. Disponivel em: https://doi.org/10.1016/j.bej.2021.107968. Acesso em: 4 fev. 2024. EVERT, R. F.; EICHHORN, S. E. Raven biologia vegetal. 8. ed. Rio de Janeiro: Guanabara Koogan, 2014. FACT MR. Succinic Acid Market Outlook (2022-2032). 2022. Disponivel em: https://www.factmr.com/report/succinic-acid-market. Acesso em: 3 dez. 2023. FAHD, S. et al. Cropping bioenergy and biomaterials in marginal land: The added value of the biorefinery concept. Energy, v. 37, n. 1, p. 79-93, set. 2012. Disponivel em: https://doi.org/10.1016/j.energy.2011.08.023. Acesso em: 4 fev. 2024. FIGUEROA-TORRES, G. M.; THEODOROPOULOS, C. Techno-economic analysis of a microalgae-based biorefinery network for biofuels and value-added products. Bioresource Technology Reports, v. 23, p. 101524, set. 2023. Disponivel em: https://doi.org/10.1016/j.biteb.2023.101524. Acesso em: 4 fev. 2024. GAO, C. et al. Improving succinate production by engineering oxygen-dependent dynamic pathway regulation in Escherichia coli. Systems Microbiology and Biomanufacturing, v. 2, n. 2, p. 331-344, 2022. Disponivel em: https://doi.org/10.1007/s43393-021-00065-5. Acesso em: 4 fev. 2024. GAO, C. et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnology for Biofuels, v. 9, n. 1, ago. 2016. Disponivel em: https://doi.org/10.1186/s13068-016-0597-8. Acesso em: 25 fev. 2024. GIULIANO, A.; POLETTO, M.; BARLETTA, D. Process optimization of a multi-product biorefinery: the effect of biomass seasonality. Chemical Engineering Research and Design, v. 107, p. 236-252, mar. 2016. Disponivel em: https://doi.org/10.1016/j.cherd.2015.12.011. Acesso em: 3 fev. 2024. GLOBAL INDUSTRY ANALYSTS, INC. Bio-based succinic acid: a global strategic business. Report MCP10705. 2020. Disponivel em: 141 https://www.strategyr.com/market-report-bio-based-succinic-acid-forecasts-global-industry-analysts-inc.asp. Acesso em: 3 fev. 2024. GLOBAL INDUSTRY ANALYSTS, INC. Bioplastics and biopolymers. Report GJOB18199864. 2023. Disponivel em: https://www.marketresearch.com/Global-Industry-Analysts-v1039/Bioplastics-Biopolymers-35040934/. Acesso em: 3 fev. 2024. GLOBAL INFORMATION. Global succinic acid market: 2023-2030. Disponivel em: https://www.giiresearch.com/report/dmin1297858-global-succinic-acid-market.html. Acesso em: 6 dez. 2023. GLOBAL MARKET. Global succinic acid market: insights. Disponivel em: https://www.globalmarketestimates.com/market-report/global-succinic-acid-market-3290. Acesso em: 5 dez. 2023. GLOBE NEWS WIRE. Acrylic acid market to reach USD 20.19 billion by 2027. 2020 Disponivel em: https://www.globenewswire.com/news-release/2020/08/12/2076817/0/en/Acrylic-Acid-Market-To-Reach-USD-20-19-Billion-By-2027-Reports-and-Data.html. Acesso em: 12 ago. 2020. GLOBE NEWS WIRE. Succinic acid market size and value to reach USD 359.8 million in 2032. Growing at CAGR of 7.3%; Market.us Study. 2023. Disponivel em: https://www.globenewswire.com/news-release/2023/05/09/2664413/0/en/Succinic-Acid-Market-Size-and-Value-to-Reach-USD-359-8-Million-in-2032-Growing-at-CAGR-of-7-3-Market-us-Study.html. Acesso em: 1 set. 2023. GONZALES, T. A. et al. Optimization of anaerobic fermentation of Actinobacillus succinogenes for increase the succinic acid production. Biocatalysis and Agricultural Biotechnology, v. 27, p. 101718, ago. 2020. Disponivel em: https://doi.org/10.1016/j.bcab.2020.101718. Acesso em: 4 fev. 2024. GRAND VIEW RESEARCH. Bio-succinic acid market size, share & trends analysis report by application (BDO, polyester polyols), by end use (industrial, food & beverages), by region, and segment forecasts, 2022 - 2030. 2021a. Disponivel em: https://www.grandviewresearch.com/industry-analysis/bio-succinic-acid-market. Acesso em: 3 fev. 2024. GRAND VIEW RESEARCH. Succinic acid market size, share & trends analysis report by type (petro-based, bio-based), by end use (food & beverages, pharmaceuticals, industrial), by region (North America, Europe, APAC, CSA, MEA), and segment forecasts, 2022 - 2030. 2021b. Disponivel em: https://www.grandviewresearch.com/industry-analysis/succinic-acid-market. Acesso em: 4 fev. 2024. GUETTLER, M. V.; RUMLER, D.; JAIN, M. K. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. International Journal 142 of Systematic and Evolutionary Microbiology, v. 49, n. 1, p. 207-216, jan. 1999. Disponivel em: https://doi.org/10.1099/00207713-49-1-207. Acesso em: 3 fev. 2024. GUNNARSSON, I. B. et al. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.). Bioresource Technology, v. 182, p. 58-66, abr. 2015. Disponivel em: https://doi.org/10.1016/j.biortech.2015.01.126. Acesso em: 3 fev. 2024. GUNNARSSON, I. B.; KARAKASHEV, D.; ANGELIDAKI, I. Succinic acid production by fermentation of Jerusalem artichoke tuber hydrolysate with Actinobacillus succinogenes 130Z. Industrial Crops and Products, v. 62, p. 125-129, dez. 2014. Disponivel em: https://doi.org/10.1016/j.indcrop.2014.08.023. Acesso em: 23 fev. 2024. GUO, F. et al. Improved succinic acid production through the reconstruction of methanol dissimilation in Escherichia coli. Bioresources and Bioprocessing, v. 9, n. 1, maio 2022. Disponivel em: https://doi.org/10.1186/s40643-022-00547-x. Acesso em: 4 fev. 2024. GURBUZ, E. I.; WETTSTEIN, S. G.; DUMESIC, J. A. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. ChemSusChem, v. 5, n. 2, p. 383-387, 2012. Disponivel em: https://doi.org/10.1002/cssc.201100608. Acesso em: 3 fev. 2024. GUTIERREZ-GARCIA, A. K.; ALVAREZ-GUZMAN, C. L.; LEON-RODRIGUEZ, A. Autodisplay of alpha amylase from Bacillus Megaterium in E. Coli for the bioconversion of starch into hydrogen, ethanol and succinic acid. Enzyme and Microbial Technology, v. 134, p. 109477, mar. 2020. Disponivel em: https://doi.org/10.1016/j.enzmictec.2019.109477. Acesso em: 4 fev. 2024. HAFYAN, R. H. et al. Integrated biorefinery for bioethanol and succinic acid co-production from bread waste: Techno-economic feasibility and life cycle assessment. Energy Conversion and Management, v. 301, p. 118033, fev. 2024. Disponivel em: https://doi.org/10.1016/j.enconman.2023.118033. Acesso em: 22 mar. 2024. HOLLADAY, J. E. et al. Top value-added chemicals from biomass. Volume II: results of screening for potential candidates from biorefinery lignin. Oak Ridge, Pacific Northwest National Laboratory (PNNL): National Renewable Energy Laboratory (NREL), 2007. Disponivel em: https://doi.org/10.2172/921839. Acesso em: 15 fev. 2024. IBGE . INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATISTICA. Censo Brasileiro de 2022. Rio de Janeiro: IBGE, 2023. IMPORTACOES de produtos dos Capitulos - 01 a 99 da NCM. Receita Federal, 2016. Disponivel em: http://receita.economia.gov.br/dados/resultados/comercio-exterior/importacoes-de-produtos-dos-capitulos-01-a-99-da-ncm 143 INDERA LUTHFI, A. A. et al. Biorefinery approach towards greener succinic acid production from oil palm frond bagasse. Process Biochemistry, v. 51, n. 10, p. 1527-1537, out. 2016. Disponivel em: https://doi.org/10.1016/j.procbio.2016.08.011. Acesso em: 4 fev. 2024. INTERNATIONAL TRADE CENTRE. Trade Map: trade statistics for international business development. 2020. Disponivel em: https://www.trademap.org/ Acesso em: 4 fev. 2024. IOANNIDOU, S. M. et al. Techno-economic and environmental sustainability assessment of succinic acid production from municipal biowaste using an electrochemical membrane bioreactor. Chemical Engineering Journal, v. 473, p. 145070, out. 2023. Disponivel em: https://doi.org/10.1016/j.cej.2023.145070. Acesso em: 21 fev. 2024. ISIKGOR, F. H.; BECER, C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, v. 6, n. 25, p. 4497-4559, 2015. Disponivel em: https://doi.org/10.1039/c5py00263j. Acesso em: 15 fev. 2024. ITO, Y.; HIRASAWA, T.; SHIMIZU, H. Metabolic engineering of Saccharomyces Cerevisiaeto improve succinic acid production based on metabolic profiling. Bioscience, Biotechnology, and Biochemistry, v. 78, n. 1, p. 151-159, 2 jan. 2014. Disponivel em: https://doi.org/10.1080/09168451.2014.877816. Acesso em: 4 fev. 2024. JAMPATESH, S. et al. Evaluation of inhibitory effect and feasible utilization of dilute acid-pretreated rice straws on succinate production by metabolically engineered Escherichia coli AS1600a. Bioresource Technology, v. 273, p. 93-102, fev. 2019. Disponivel em: https://doi.org/10.1016/j.biortech.2018.11.002. Acesso em: 4 fev. 2024. JANTAMA, K. et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering, v. 99, n. 5, p. 1140-1153, 2008. Disponivel em: https://doi.org/10.1002/bit.21694. Acesso em: 23 fev. 2024. JANTAMA, K. et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coliC. Biotechnology and Bioengineering, v. 101, n. 5, p. 881-893, dez. 2008. Disponivel em: https://doi.org/10.1002/bit.22005. Acesso em: 23 fev. 2024. JAYARAM, V. B. et al. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chemistry, v. 151, p. 421-428, maio 2014. Disponivel em: https://doi.org/10.1016/j.foodchem.2013.11.025. Acesso em: 4 fev. 2024. JIANG, M. et al. Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli. Applied and Environmental 144 Microbiology, v. 76, n. 4, p. 1298-1300, fev. 2010. Disponivel em: https://doi.org/10.1128/aem.02190-09. Acesso em: 4 fev. 2024. JIANG, M. et al. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. Bioresource Technology, v. 245, p. 1710-1717, dez. 2017. Disponivel em: https://doi.org/10.1016/j.biortech.2017.05.209. Acesso em: 20 fev. 2024. JIANG, M. et al. Succinic acid production from cellobiose by Actinobacillus succinogenes. Bioresource Technology, v. 135, p. 469-474, maio 2013. Disponivel em: https://doi.org/10.1016/j.biortech.2012.10.019. Acesso em: 23 fev. 2024. KANG, K. H. et al. Hydrogenation of succinic acid to 1,4-butanediol over Re.Ru bimetallic catalysts supported on mesoporous carbon. Applied Catalysis A: General, v. 490, p. 153-162, jan. 2015. Disponivel em: https://doi.org/10.1016/j.apcata.2014.11.029. Acesso em: 4 fev. 2024. KANG, K. H. et al. Hydrogenation of succinic acid to ƒÁ-butyrolactone and 1,4-butanediol over mesoporous rhenium.copper.carbon composite catalyst. Journal of Molecular Catalysis A: Chemical, v. 395, p. 234-242, dez. 2014. Disponivel em: https://doi.org/10.1016/j.molcata.2014.08.032. Acesso em: 4 fev. 2024. KIM, P. et al. Effect of Overexpression of Actinobacillus succinogenes Phosphoenolpyruvate Carboxykinase on Succinate production in Escherichia coli. Applied and Environmental Microbiology, v. 70, n. 2, p. 1238-1241, fev. 2004. Disponivel em: https://doi.org/10.1128/aem.70.2.1238-1241.2004. Acesso em: 4 fev. 2024. KOBAYASHI, H. et al. Conversion of cellulose into renewable chemicals by supported metal catalysis. Applied Catalysis A: General, v. 409-410, p. 13-20, dez. 2011. Disponivel em: https://doi.org/10.1016/j.apcata.2011.10.014. Acesso em: 4 fev. 2024. KUBO, Y.; TAKAGI, H.; NAKAMORI, S. Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. Journal of Bioscience and Bioengineering, v. 90, n. 6, p. 619-624, jan. 2000. Disponivel em: https://doi.org/10.1016/s1389-1723(00)90006-9. Acesso em: 4 fev. 2024. KUGLARZ, M. et al. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresource Technology, v. 265, p. 191-199, out. 2018. Disponivel em: https://doi.org/10.1016/j.biortech.2018.05.099. Acesso em: 4 fev. 2024. KUMAR, R.; BASAK, B.; JEON, B. H. Sustainable production and purification of succinic acid: a review of membrane-integrated green approach. Journal of Cleaner Production, v. 277, p. 123954, dez. 2020. Disponivel em: https://doi.org/10.1016/j.jclepro.2020.123954. Acesso em: 4 fev. 2024. 145 KUMARI, D.; SINGH, R. Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renewable and Sustainable Energy Reviews, v. 90, p. 877-891, jul. 2018. Disponivel em: https://doi.org/10.1016/j.rser.2018.03.111. Acesso em: 4 fev. 2024. KURZROCK, T.; WEUSTER-BOTZ, D. Recovery of succinic acid from fermentation broth. Biotechnology Letters, v. 32, n. 3, p. 331-339, 2010. Disponivel em: https://doi.org/10.1007/s10529-009-0163-6. Acesso em: 4 fev. 2024. LADAKIS, D. et al. Valorization of spent sulphite liquor for succinic acid production via continuous fermentation system. Biochemical Engineering Journal, v. 137, p. 262-272, set. 2018. Disponivel em: https://doi.org/10.1016/j.bej.2018.05.015. Acesso em: 3 fev. 2024. LEE, J. W. et al. Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metabolic Engineering, v. 38, p. 409-417, nov. 2016. Disponivel em: https://doi.org/10.1016/j.ymben.2016.10.004. Acesso em: 4 fev. 2024. LEE, P. C. et al. Batch and continuous cultures of Mannheimia succiniciproducens MBEL55E for the production of succinic acid from whey and corn steep liquor. Bioprocess and Biosystems Engineering, v. 26, n. 1, p. 63-67, nov. 2003. Disponivel em: https://doi.org/10.1007/s00449-003-0341-1. Acesso em: 25 fev. 2024. LEE, P. C. et al. Succinic acid production by Anaerobiospirillum succiniciproducens: effects of the H2/CO2 supply and glucose concentration. Enzyme and Microbial Technology, v. 24, n. 8-9, p. 549-554, jun. 1999. Disponivel em: https://doi.org/10.1016/s0141-0229(98)00156-2. Acesso em: 4 fev. 2024. LEE, S. J.; SONG, H.; LEE, S. Y. Genome-Based Metabolic Engineering of Mannheimia succiniciproducens for Succinic Acid Production. Applied and Environmental Microbiology, v. 72, n. 3, p. 1939-1948, mar. 2006. Disponivel em: https://doi.org/10.1128/aem.72.3.1939-1948.2006. Acesso em: 4 fev. 2024. LEUNG, C. C. J. et al. Utilisation of waste bread for fermentative succinic acid production. Biochemical Engineering Journal, v. 65, p. 10-15, jun. 2012. Disponivel em: https://doi.org/10.1016/j.bej.2012.03.010. Acesso em: 23 fev. 2024. LI, C. et al. Bio-refinery of waste streams for green and efficient succinic acid production by engineered Yarrowia lipolytica without pH control. Chemical Engineering Journal, v. 371, p. 804-812, set. 2019. Disponivel em: https://doi.org/10.1016/j.cej.2019.04.092. Acesso em: 4 fev. 2024. LI, C. et al. High efficiency succinic acid production from glycerol via in situ fibrous bed bioreactor with an engineered Yarrowia lipolytica. Bioresource Technology, v. 225, p. 9-16, fev. 2017b. Disponivel em: https://doi.org/10.1016/j.biortech.2016.11.016. Acesso em: 25 fev. 2024. 146 LI, C. et al. Promising advancement in fermentative succinic acid production by yeast hosts. Journal of Hazardous Materials, v. 401, p. 123414, jan. 2021. Disponivel em: https://doi.org/10.1016/j.jhazmat.2020.123414. Acesso em: 4 fev. 2024. LI, J. et al. Effect of redox potential regulation on succinic acid production by Actinobacillus succinogenes. Bioprocess and Biosystems Engineering, v. 33, n. 8, p. 911-920, mar. 2010. Disponivel em: https://doi.org/10.1007/s00449-010-0414-x. Acesso em: 4 fev. 2024. LI, Q. et al. Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes. Bioresource Technology, v. 101, n. 9, p. 3292-3294, maio 2010. Disponivel em: https://doi.org/10.1016/j.biortech.2009.12.064. Acesso em: 4 fev. 2024. LI, Q. et al. Efficient decolorization and deproteinization using uniform polymer microspheres in the succinic acid biorefinery from bio-waste cotton (Gossypium hirsutum L.) stalks. Bioresource Technology, v. 135, p. 604-609, maio 2013. Disponivel em: https://doi.org/10.1016/j.biortech.2012.06.101. Acesso em: 23 fev. 2024. LI, Q. et al. Enhanced succinate production from glycerol by engineered Escherichia coli strains. Bioresource Technology, v. 218, p. 217-223, out. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2016.06.090. Acesso em: 4 fev. 2024. LI, X. et al. Efficient succinic acid production using a biochar-treated textile waste hydrolysate in an in situ fibrous bed bioreactor. Biochemical Engineering Journal, v. 149, p. 107249, set. 2019. Disponivel em: https://doi.org/10.1016/j.bej.2019.107249. Acesso em: 20 fev. 2024. LI, Y. et al. A novel whole-phase succinate fermentation strategy with high volumetric productivity in engineered Escherichia coli. Bioresource Technology, v. 149, p. 333-340, dez. 2013. Disponivel em: https://doi.org/10.1016/j.biortech.2013.09.077. Acesso em: 4 fev. 2024. LIANG, L. et al. Increased production of succinic acid in Escherichia coli by overexpression of malate dehydrogenase. Biotechnology Letters, v. 33, n. 12, p. 2439-2444, jul. 2011. Disponivel em: https://doi.org/10.1007/s10529-011-0707-4. Acesso em: 23 fev. 2024. LIANG, L. et al. Regulation of NAD(H) pool and NADH/NAD+ ratio by overexpression of nicotinic acid phosphoribosyltransferase for succinic acid production in Escherichia coli NZN111. Enzyme and Microbial Technology, v. 51, n. 5, p. 286-293, out. 2012. Disponivel em: https://doi.org/10.1016/j.enzmictec.2012.07.011. Acesso em: 23 fev. 2024. LIN, C. S. K. et al. A seawater-based biorefining strategy for fermentative production and chemical transformations of succinic acid. Energy & Environmental Science, v. 4, n. 4, p. 1471, 2011. Disponivel em: https://doi.org/10.1039/c0ee00666a. Acesso em: 4 fev. 2024. 147 LINO, A. G. Composicao quimica e estrutural da lignina e lipidios do bagaco e palha da cana-de-acucar. 2015. Tese (Doutorado em Agroquimica) . Universidade Federal de Vicosa, Vicosa, 2015. Disponivel em: https://www.locus.ufv.br/handle/123456789/8522. Acesso em: 3 fev. 2024. LIU, W. et al. A two-stage process for succinate production using genetically engineered Corynebacterium acetoacidophilum. Process Biochemistry, v. 50, n. 11, p. 1692-1700, nov. 2015. Disponivel em: https://doi.org/10.1016/j.procbio.2015.07.017. Acesso em: 4 fev. 2024. LIU, R. et al. Efficient succinic acid production from lignocellulosic biomass by simultaneous utilization of glucose and xylose in engineered Escherichia coli. Bioresource Technology, v. 149, p. 84-91, dez. 2013. Disponivel em: https://doi.org/10.1016/j.biortech.2013.09.052. Acesso em: 5 mar. 2024. LIU, Y. et al. Biotransformation of spent coffee grounds by fermentation with monocultures of Saccharomyces cerevisiae and Lachancea thermotolerans aided by yeast extracts. LWT, v. 138, p. 110751, mar. 2021. Disponivel em: https://doi.org/10.1016/j.lwt.2020.110751. Acesso em: 24 fev. 2024. LIU, Y. P. et al. Economical succinic acid production from cane molasses by Actinobacillus succinogenes. Bioresource Technology, v. 99, n. 6, p. 1736-1742, abr. 2008. Disponivel em: https://doi.org/10.1016/j.biortech.2007.03.044. Acesso em: 4 fev. 2024. LO, E. et al. Biochemical conversion of sweet sorghum bagasse to succinic acid. Journal of Bioscience and Bioengineering, v. 129, n. 1, p. 104-109, jan. 2020. Disponivel em: https://doi.org/10.1016/j.jbiosc.2019.07.003. Acesso em: 3 fev. 2024. LONG, Xiao-Hua et al. Jerusalem artichoke: A sustainable biomass feedstock for biorefinery. Renewable and Sustainable Energy Reviews, v. 54, p. 1382-1388, fev. 2016. Disponivel em: https://doi.org/10.1016/j.rser.2015.10.063. Acesso em: 15 fev. 2024. LONGANESI, L. et al. Succinic acid production from cheese whey by biofilms of Actinobacillus succinogenes: packed bed bioreactor tests. Journal of Chemical Technology & Biotechnology, v. 93, n. 1, p. 246-256, jan. 2018. Disponivel em: https://doi.org/10.1002/jctb.5347. Acesso em: 4 fev. 2024. LOPEZ-PORFIRI, P.; GORGOJO, P.; GONZALEZ-MIQUEL, M. Solubility study and thermodynamic modelling of succinic acid and fumaric acid in bio-based solvents. Journal of Molecular Liquids, v. 369, p. 120836, jan. 2023. Disponivel em: https://doi.org/10.1016/j.molliq.2022.120836. Acesso em: 4 fev. 2024. LOQUE, D.; SCHELLER, H. V.; PAULY, M. Engineering of plant cell walls for enhanced biofuel production. Current Opinion in Plant Biology, v. 25, p. 151-161, jun. 2015. Disponivel em: https://doi.org/10.1016/j.pbi.2015.05.018. Acesso em: 15 fev. 2024. 148 LOUASTE, B.; ELOUTASSI, N. Succinic acid production from whey and lactose by Actinobacillus succinogenes 130Z in batch fermentation. Biotechnology Reports, v. 27, p. e00481, set. 2020. Disponivel em: https://doi.org/10.1016/j.btre.2020.e00481. Acesso em: 4 fev. 2024. MA, J. et al. Succinic acid production from sucrose and molasses by metabolically engineered E. coli using a cell surface display system. Biochemical Engineering Journal, v. 91, p. 240-249, out. 2014. Disponivel em: https://doi.org/10.1016/j.bej.2014.08.014. Acesso em: 26 fev. 2024. MALEIC anhydride from n-Butane (Fixed-bed Process). Chemical Engineering, 1 dez. 2015. Disponivel em: https://www.chemengonline.com/maleic-anhydride-n-butane-fixed-bed-process-intratec-solutions/?printmode=1 MANCINI, E. et al. Economic and environmental analysis of bio-succinic acid production: From established processes to a new continuous fermentation approach with in-situ electrolytic extraction. Chemical Engineering Research and Design, v. 179, p. 401-414, mar. 2022. Disponivel em: https://doi.org/10.1016/j.cherd.2022.01.040. Acesso em: 22 mar. 2024. MARINHO, G. S.; ALVARADO-MORALES, M.; ANGELIDAKI, I. Valorization of macroalga Saccharina latissima as novel feedstock for fermentation-based succinic acid production in a biorefinery approach and economic aspects. Algal Research, v. 16, p. 102-109, jun. 2016. Disponivel em: https://doi.org/10.1016/j.algal.2016.02.023. Acesso em: 3 fev. 2024. MARTINEZ-GARCIA, R. et al. Use of a flor yeast strain for the second fermentation of sparkling wines: effect of endogenous CO2 over-pressure on the volatilome. Food Chemistry, v. 308, p. 125555, mar. 2020. Disponivel em: https://doi.org/10.1016/j.foodchem.2019.125555 MCCOY M. Succinic acid, once a biobased chemical star, is barely being made. Chemical & Engineering News. v. 97, n. 12, mar, 2019. Disponivel em: https://cen.acs.org/business/biobased-chemicals/Succinic-acid-once-biobased-chemical/97/i12. Acesso em: 3 fev. 2024. MCKINLAY, J. B.; VIEILLE, C.; ZEIKUS, J. G. Prospects for a bio-based succinate industry. Applied Microbiology and Biotechnology, v. 76, n. 4, p. 727-740, jul. 2007. Disponivel em: https://doi.org/10.1007/s00253-007-1057-y. Acesso em: 4 fev. 2024. MCKINLAY, J. B.; VIEILLE, C. 13C-metabolic flux analysis of Actinobacillus succinogenes fermentative metabolism at different NaHCO3 and H2 concentrations. Metabolic Engineering, v. 10, n. 1, p. 55-68, jan. 2008. Disponivel em: https://doi.org/10.1016/j.ymben.2007.08.004. Acesso em: 4 fev. 2024. MESSAOUDI, Y. et al. Effect of instant controlled pressure drop pretreatment of lignocellulosic wastes on enzymatic saccharification and ethanol production. 149 Industrial Crops and Products, v. 77, p. 910-919, dez. 2015. Disponivel em: https://doi.org/10.1016/j.indcrop.2015.09.074. Acesso em: 4 fev. 2024. MILLARD, C. S. et al. Enhanced production of succinic acid by overexpression of phosphoenolpyruvate carboxylase in Escherichia coli. Applied and Environmental Microbiology, v. 62, n. 5, p. 1808-1810, 1996. Disponivel em: https://doi.org/10.1128/aem.62.5.1808-1810.1996. Acesso em: 4 fev. 2024. MOHANAKRISHNA, G.; MODESTRA, J. A. Value addition through biohydrogen production and integrated processes from hydrothermal pretreatment of lignocellulosic biomass. Bioresource Technology, v. 369, p. 128386, fev. 2023. Disponivel em: https://doi.org/10.1016/j.biortech.2022.128386. Acesso em: 4 fev. 2024. MOKWATLO, S. C.; NICOL, W. Structure and cell viability analysis of Actinobacillus succinogenes biofilms as biocatalysts for succinic acid production. Biochemical Engineering Journal, v. 128, p. 134-140, dez. 2017. Disponivel em: https://doi.org/10.1016/j.bej.2017.09.013. Acesso em: 4 fev. 2024. MONTEIRO, B. M. et al. Avaliacao tecnico-economica da producao de acido-succinico via fermentacao anaerobica. Revista Processos Quimicos, v. 12, n. 24, p. 51-63, 2018. Disponivel em: https://doi.org/10.19142/rpq.v12i24.463. Acesso em: 4 fev. 2024. MUZUMDAR, A. V.; SAWANT, S. B.; PANGARKAR, V. G. Reduction of maleic acid to succinic acid on titanium cathode. Organic Process Research & Development, v. 8, n. 4, p. 685-688, jun. 2004. Disponivel em: https://doi.org/10.1021/op0300185 Acesso em: 4 fev. 2024. NAGY, Z. et al. Ten questions concerning occupant-centric control and operations. Building and Environment, v. 242, p. 110518, ago. 2023. Disponivel em: https://doi.org/10.1016/j.buildenv.2023.110518. Acesso em: 5 fev. 2024. NAGY, Z. K. et al. Recent advances in the monitoring, modelling and control of crystallization systems. Chemical Engineering Research and Design, v. 91, n. 10, p. 1903-1922, out. 2013. Disponivel em: https://doi.org/10.1016/j.cherd.2013.07.018. Acesso em: 4 fev. 2024. NAIK, S. N. et al. Production of first and second generation biofuels: a comprehensive review. Renewable and Sustainable Energy Reviews, v. 14, n. 2, p. 578-597, fev. 2010. Disponivel em: https://doi.org/10.1016/j.rser.2009.10.003. Acesso em: 3 fev. 2024. NARISETTY, V. et al. Technological advancements in valorization of second generation (2G) feedstocks for bio-based succinic acid production. Bioresource Technology, v. 360, p. 127513. set. 2022. Disponivel em: https://doi.org/10.1016/j.biortech.2022.127513. Acesso em: 4 fev. 2024. 150 NGHIEM, N.; KLEFF, S.; SCHWEGMANN, S. Succinic Acid: Technology Development and Commercialization. Fermentation, v. 3, n. 2, p. 26, 9 jun. 2017. Disponivel em: https://doi.org/10.3390/fermentation3020026. Acesso em: 4 fev. 2024. NEVES, R. Respiracao celular aerobica e fermentacao. Educacao.Biologia, Rio de Janeiro, [2013?] Disponivel em: http://educacao.globo.com/biologia/assunto/fisiologia-celular/respiracao-celular-aerobica-e-fermentacao.html. Acesso em: 31 ago. 2020. OLAJUYIN, A. M. et al. Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. Bioresource Technology, v. 214, p. 653-659, ago. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2016.04.117. Acesso em: 4 fev. 2024. OLAJUYIN, A. M. et al. Effective production of succinic acid from coconut water (Cocos nucifera) by metabolically engineered Escherichia coli with overexpression of Bacillus subtilis pyruvate carboxylase. Biotechnology Reports, v. 24, p. e00378, dez. 2019. Disponivel em: https://doi.org/10.1016/j.btre.2019.e00378. Acesso em: 7 fev. 2024. OLIVEIRA, S. D. et al. Mapeamento tecnologico da producao do bio-acido succinico no cenario brasileiro. Cadernos de Prospeccao, v. 6, n. 2, p. 162-173, jun. 2013. Disponivel em: https://doi.org/10.9771/s.cprosp.2013.006.019. Acesso em: 20 fev. 2024. OMWENE, P. I. et al. Recovery of succinic acid from whey fermentation broth by reactive extraction coupled with multistage processes. Journal of Environmental Chemical Engineering, v. 8, n. 5, p. 104216, out. 2020. Disponivel em: https://doi.org/10.1016/j.jece.2020.104216. Acesso em: 4 fev. 2024. ONG, K. L. et al. Co-fermentation of glucose and xylose from sugarcane bagasse into succinic acid by Yarrowia lipolytica. Biochemical Engineering Journal, v. 148, p. 108-115, ago. 2019. Disponivel em: https://doi.org/10.1016/j.bej.2019.05.004. Acesso em: 25 fev. 2024. ONG, K. L.; FICKERS, P.; LIN, C. S. K. Enhancing succinic acid productivity in the yeast Yarrowia lipolytica with improved glycerol uptake rate. Science of The Total Environment, v. 702, p. 134911, fev. 2020. Disponivel em: https://doi.org/10.1016/j.scitotenv.2019.134911. Acesso em: 25 fev. 2024. ORJUELA, A. et al. A novel process for recovery of fermentation-derived succinic acid. Separation and Purification Technology, v. 83, p. 31-37, nov. 2011. Disponivel em: https://doi.org/10.1016/j.seppur.2011.08.010. Acesso em: 7 fev. 2024. OTERO, J. M. et al. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLOS ONE, v. 8, n. 1, p. e54144, jan. 2013. 151 Disponivel em: https://doi.org/10.1371/journal.pone.0054144. Acesso em: 21 fev. 2024. OUIDDIR, M. et al. Selection of Algerian lactic acid bacteria for use as antifungal bioprotective cultures and application in dairy and bakery products. Food Microbiology, v. 82, p. 160-170, set. 2019. Disponivel em: https://doi.org/10.1016/j.fm.2019.01.020. Acesso em: 4 fev. 2024. OZDENKCI, K. et al. A novel biorefinery integration concept for lignocellulosic biomass. Energy Conversion and Management, v. 149, p. 974-987, out. 2017. Disponivel em: https://doi.org/10.1016/j.enconman.2017.04.034. Acesso em: 4 fev. 2024. PADI, R. K. et al. Prospects for commercial microalgal biorefineries: integrated pilot demonstrations and process simulations based techno-economic assessment of single and multi-product value chains. Algal Research, v. 74, p. 103190, jul. 2023. Disponivel em: https://doi.org/10.1016/j.algal.2023.103190. Acesso em: 4 fev. 2024. PAL, S. L. et al. Evaluation of distribution of succinic acid between binary phase system with biodiesel+ n, n-dioctyloctan-1-amine. International Journal of Chemical Engineering, v. 2019, 2019. Disponivel em: https://doi.org/10.1155/2019/9346038. Acesso em: 4 fev. 2024 PATERAKI, C. et al. Actinobacillus succinogenes: advances on succinic acid production and prospects for development of integrated biorefineries. Biochemical Engineering Journal, v. 112, p. 285-303, ago. 2016a. Disponivel em: https://doi.org/10.1016/j.bej.2016.04.005. Acesso em: 4 fev. 2024. PATERAKI, C. et al. Modelling succinic acid fermentation using a xylose based substrate. Biochemical Engineering Journal, v. 114, p. 26-41, out. 2016b. Disponivel em: https://doi.org/10.1016/j.bej.2016.06.011. Acesso em: 4 fev. 2024. PATERAKI, C. et al. Pretreatment of spent sulphite liquor via ultrafiltration and nanofiltration for bio-based succinic acid production. Journal of Biotechnology, v. 233, p. 95-105, set. 2016c. Disponivel em: https://doi.org/10.1016/j.jbiotec.2016.06.027. Acesso em: 4 fev. 2024. PATERAKI, C. et al. Succinic acid production from pulp and paper industry waste: a transcriptomic approach. Journal of Biotechnology, v. 325, p. 250-260, jan. 2021. Disponivel em: https://doi.org/10.1016/j.jbiotec.2020.10.015. Acesso em: 23 fev. 2024. PATSALOU, M. et al. A biorefinery for conversion of citrus peel waste into essential oils, pectin, fertilizer and succinic acid via different fermentation strategies. Waste Management, v. 113, p. 469-477, jul. 2020. Disponivel em: https://doi.org/10.1016/j.wasman.2020.06.020. Acesso em: 4 fev. 2024. PATSALOU, M. et al. Development of a citrus peel-based biorefinery strategy for the production of succinic acid. Journal of Cleaner Production, v. 166, p. 706-716, nov. 152 2017. Disponivel em: https://doi.org/10.1016/j.jclepro.2017.08.039. Acesso em: 4 fev. 2024. PENNACCHIO, A. et al. Isolation of new cellulase and xylanase producing strains and application to lignocellulosic biomasses hydrolysis and succinic acid production. Bioresource Technology, v. 259, p. 325-333, jul. 2018. Disponivel em: https://doi.org/10.1016/j.biortech.2018.03.027. Acesso em: 4 fev. 2024. PEREZ, R. F.; FRAGA, M. A. Hemicellulose-derived chemicals: one-step production of furfuryl alcohol from xylose. Green Chemistry, v. 16, n. 8, p. 3942-3050, jul. 2014. Disponivel em: https://doi.org/10.1039/c4gc00398e. Acesso em: 3 fev. 2024. PINAZO, J. M. et al. Sustainability metrics for succinic acid production: a comparison between biomass-based and petrochemical routes. Catalysis Today, v. 239, p. 17-24, jan. 2015. Disponivel em: https://doi.org/10.1016/j.cattod.2014.05.035. Acesso em: 3 fev. 2024. RAAB, A. M. et al. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metabolic Engineering, v. 12, n. 6, p. 518-525, nov. 2010. Disponivel em: https://doi.org/10.1016/j.ymben.2010.08.005. Acesso em: 4 fev. 2024. RAGAUSKAS, A. J. et al. Lignin valorization: improving lignin processing in the biorefinery. Science, v. 344, n. 6185, p. 1246843, maio 2014. Disponivel em: https://doi.org/10.1126/science.1246843. Acesso em: 13 fev. 2024. RENDULI., T. et al. The dicarboxylate transporters from the AceTr Family and Dct-02 oppositely affect succinic acid production in S. cerevisiae. Journal of Fungi, v. 8, n. 8, p. 822, ago. 2022. Disponivel em: https://doi.org/10.3390/jof8080822. Acesso em: 4 fev. 2024. RIGAKI, A.; WEBB, C.; THEODOROPOULOS, C. Double substrate limitation model for the bio-based production of succinic acid from glycerol. Biochemical Engineering Journal, v. 153, p. 107391, jan. 2020. Disponivel em: https://doi.org/10.1016/j.bej.2019.107391. Acesso em: 4 fev. 2024. ROHAN, S. Succinic acid market worth 701.0 million USD by 2021. Markets and Markets, 2016. Disponivel em: http://www.marketsandmarkets.com/PressReleases/succinicacid.as. Acesso em: 4 fev. 2024. RUY, A. D. S. Avaliacao das tecnologias e potencial economico de moleculas-plataforma oriundas de biomassa. 2018. Dissertacao (Mestrado em Engenharia Quimica) - Universidade Federal da Bahia, Salvador, 2018. RUY, A. D. S. et al. Catalysts for glycerol hydrogenolysis to 1,3-propanediol: a review of chemical routes and market. Catalysis Today, v. 381, p. 243-253, jun. 2020. Disponivel em: https://doi.org/10.1016/j.cattod.2020.06.035. Acesso em: 4 fev. 2024. 153 RUY, A. D. S. et al. Market prospecting and assessment of the economic potential of glycerol from biodiese. In: BASSO, T. P.; BASSO; T. O.; BASSO, L. C. (ed.) Biotechnological Applications of Biomass. Sao Paulo: Intech Open, 2020. RYU, H. W.; KANG, K. H.; YUN, J. S. Bioconversion of fumarate to succinate using glycerol as a carbon source. Applied Biochemistry and Biotechnology, v. 78, n. 1-3, p. 511-520, 1999. Disponivel em: https://doi.org/10.1385/abab:78:1-3:511. Acesso em: 4 fev. 2024. SADHUKHAN, S.; VILLA, R.; SARKAR, U. Microbial production of succinic acid using crude and purified glycerol from a Crotalaria juncea based biorefinery. Biotechnology Reports, v. 10, p. 84-93, jun. 2016. Disponivel em: https://doi.org/10.1016/j.btre.2016.03.008. Acesso em: 15 fev. 2024. SALMA, A. et al. A new approach to produce succinic acid through a co-culture system. Applied Biochemistry and Biotechnology, v. 193, n. 9, p. 2872-2892, maio 2021. Disponivel em: https://doi.org/10.1007/s12010-021-03572-2. Acesso em: 5 mar. 2024. SALVACHUA, D. et al. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnology for Biofuels, v. 9, n. 28, fev. 2016. Disponivel em: https://doi.org/10.1186/s13068-016-0425-1. Acesso em: 4 fev. 2024. SAN, K. et al. Simultaneous anaerobic production of isoamyl acetate and succinic acid. Depositante: Rice University. US 7,569,380 B2, Deposito: 22 dez. 2005, Concessao: 4 ago. 2009. Disponivel em: https://patentimages.storage.googleapis.com/97/2b/8f/ad929eca8c089a/US7569380.pdf. Acesso em: 23 fev. 2024. SAUER, M. et al. Microbial production of organic acids: expanding the markets. Trends in Biotechnology, v. 26, n. 2, p. 100-108, fev. 2008. Disponivel em: https://doi.org/10.1016/j.tibtech.2007.11.006. Acesso em: 4 fev. 2024. SAWISIT, A. et al. Mutation in galP improved fermentation of mixed sugars to succinate using engineered Escherichia coli AS1600a and AM1 mineral salts medium. Bioresource Technology, v. 193, p. 433-441, out. 2015. Disponivel em: https://doi.org/10.1016/j.biortech.2015.06.108. Acesso em: 23 fev. 2024. SCHOLTEN, E.; DAGELE, D. Succinic acid production by a newly isolated bacterium. Biotechnology Letters, v. 30, n. 12, p. 2143-2146, jul. 2008. Disponivel em: https://doi.org/10.1007/s10529-008-9806-2. Acesso em: 4 fev. 2024. SERRANO-RUIZ, J. C. et al. Conversion of cellulose to hydrocarbon fuels by progressive removal of oxygen. Applied Catalysis B: Environmental, v. 100, n. 1-2, p. 184-189, out. 2010. Disponivel em: https://doi.org/10.1016/j.apcatb.2010.07.029. Acesso em: 15 fev. 2024. 154 SHARMA, P. et al. Microbial strategies for bio-transforming food waste into resources. Bioresource Technology, v. 299, p. 122580, mar. 2020. Disponivel em: https://doi.org/10.1016/j.biortech.2019.122580. Acesso em: 3 fev. 2024. SHEN, N. et al. Efficient production of succinic acid from duckweed (Landoltia punctata) hydrolysate by Actinobacillus succinogenes GXAS137. Bioresource Technology, v. 250, p. 35-42, fev. 2018. Disponivel em: https://doi.org/10.1016/j.biortech.2017.09.208. Acesso em: 23 fev. 2024. SHEN, N. et al. Succinic acid production from duckweed (Landoltia punctata) hydrolysate by batch fermentation of Actinobacillus succinogenes GXAS137. Bioresource Technology, v. 211, p. 307-312, jul. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2016.03.036. Acesso em: 23 fev. 2024. SIDDIQI, H. et al. In-depth physiochemical characterization and detailed thermo-kinetic study of biomass wastes to analyze its energy potential. Renewable Energy, v. 148, p. 756-771, abr. 2020. Disponivel em: https://doi.org/10.1016/j.renene.2019.10.162. Acesso em: 3 fev. 2024. SILVA, R. F. D. P. Avaliacao economica comparativa entre a producao de acido succinico e outros produtos a partir do glicerol. 2021. Trabalho de Conclusao de Cursos (Bacharelado em Engenharia Quimica) . Universidade Federal Fluminense. Niteroi, 2021. SINGH, R. S.; SINGH, T.; LARROCHE, C. Biotechnological applications of inulin-rich feedstocks. Bioresource Technology, v. 273, p. 641-653, fev. 2019. Disponivel em: https://doi.org/10.1016/j.biortech.2018.11.031. Acesso em: 4 fev. 2024. SINGH, S. Succinic acid market worth $237.8 million by 2027. Markets and Markets, 2019 Available from: https://www.marketsandmarkets.com/PressReleases/succinic-acid.asp. Acesso em: 4 fev. 2024. SOLLAI, S. et al. Renewable methanol production from green hydrogen and captured CO2: a techno-economic assessment. Journal of CO2 Utilization, v. 68, p. 102345, fev. 2023. Disponivel em: https://doi.org/10.1016/j.jcou.2022.102345. Acesso em: 5 fev. 2024. SONG, H.; LEE, S. Y. Production of succinic acid by bacterial fermentation. Enzyme and Microbial Technology, v. 39, n. 3, p. 352-361, jul. 2006. Disponivel em: https://doi.org/10.1016/j.enzmictec.2005.11.043. Acesso em: 4 fev. 2024. SOSA-FERNANDEZ, P. A.; VELIZAROV, S. Performance comparison of precipitation strategies for recovering succinic acid from carob pod-based fermentation broths. Separation Science and Technology, v. 53, n. 17, p. 2813-2825, maio 2018. Disponivel em: https://doi.org/10.1080/01496395.2018.1473881. Acesso em: 4 fev. 2024. 155 SUN, J. et al. Glycerol improves heterologous biosynthesis of betulinic acid in engineered Yarrowia lipolytica. Chemical Engineering Science, v. 196, p. 82-90, mar. 2019. Disponivel em: https://doi.org/10.1016/j.ces.2018.10.052. Acesso em: 4 fev. 2024. TAYLOR, P. Biosuccinic acid ready for take off? Chemistry World, jan. 2010. Disponivel em: https://www.chemistryworld.com/news/biosuccinic-acid-ready-for-takeoff/3000559.article. Acesso em: 4 fev. 2024. TECHNAVIO. Succinic acid market by type, end-user, and geography: forecast and analysis 2023-2027. 2023. Disponivel em: https://www.technavio.com/report/succinic-acid-market-analysis. Acesso em: 18 set. 2023. THUY, N. T. H. et al. Fermentation and crystallization of succinic acid from Actinobacillus succinogenes ATCC55618 using fresh cassava root as the main substrate. Bioresource Technology, v. 233, p. 342-352, jun. 2017. Disponivel em: https://doi.org/10.1016/j.biortech.2017.02.114. Acesso em: 4 fev. 2024. TOYA, Y.; SHIMIZU, H. Metabolic pathway engineering for the non-growth-associated succinate production in Escherichia coli based on flux solution space. Journal of Bioscience and Bioengineering, maio 2022. Disponivel em: https://doi.org/10.1016/j.jbiosc.2022.04.008. Acesso em: 4 fev. 2024. TRIVEDI, G. S.; SHAH, B. G.; INDUSEKHAR, V. K. Preparation and characterization of maleic anhydride based resins in bead and granular form. Reactive and Functional Polymers, v. 31, n. 3, p. 219-224, out. 1996. Disponivel em: https://doi.org/10.1016/1381-5148(96)00059-4. Acesso em: 4 fev. 2024. UTSUNOMIA, C.; REN, O.; ZINN, M. Poly(4-hydroxybutyrate) current state and perspectives. Frontiers in Bioengineering and Biotechnology, v. 8, abr. 2020. Disponivel em: https://doi.org/10.3389/fbioe.2020.00257. Acesso em: 3 fev. 2024. VALLE, A. et al. Metabolomics for the design of new metabolic engineering strategies for improving aerobic succinic acid production in Escherichia coli. Metabolomics, v. 18, n. 56, jul. 2022. Disponivel em: https://doi.org/10.1007/s11306-022-01912-9. Acesso em: 4 fev. 2024. VASILAKOU, K. et al. Assessing the future of second-generation bioethanol by 2030: a techno-economic assessment integrating technology learning curves. Applied Energy, v. 344, p. 121263, ago. 2023. Disponivel em: https://doi.org/10.1016/j.apenergy.2023.121263. Acesso em: 5 fev. 2024. VASWANI S. Bio-based succinic acid. In: Process Economics Program: PEP Review 2010-14. Menlo Park, CA: SRI Consulting, 2010. VENTORINO, V. et al. Bio-Based Succinate Production from Arundo donax Hydrolysate with the New Natural Succinic Acid-Producing Strain Basfia 156 succiniciproducens BPP7. BioEnergy Research, v. 10, n. 2, p. 488-498, jan. 2017. Disponivel em: https://doi.org/10.1007/s12155-017-9814-y. Acesso em: 24 fev. 2024. VISION RESEARCH REPORTS. Succinic acid market (by type: petro-based, bio-based; by end use: food & beverages, pharmaceuticals, industrial) - global industry analysis, size, share, growth, trends, revenue, regional outlook and forecast 2022-2030. 2023. Disponivel em: https://www.visionresearchreports.com/succinic-acid-market/39696. Acesso em: 19 set. 2023. WAINAINA, S. et al. Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresource Technology, v. 301, p. 122778, abr. 2020. Disponivel em: https://doi.org/10.1016/j.biortech.2020.122778 WAN, C. et al. Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. Applied Biochemistry and Biotechnology, v. 145, n. 1-3, p. 111-119, 2008. Disponivel em: https://doi.org/10.1007/s12010-007-8031-0. Acesso em: 4 fev. 2024. WANG, C. et al. Novel membrane-based biotechnological alternative process for succinic acid production and chemical synthesis of bio-based poly (butylene succinate). Bioresource Technology, v. 156, p. 6-13, mar. 2014. Disponivel em: https://doi.org/10.1016/j.biortech.2013.12.043. Acesso em: 17 mar. 2024. WANG, D. et al. Improvement of succinate production by overexpression of a cyanobacterial carbonic anhydrase in Escherichia coli. Enzyme and Microbial Technology, v. 45, n. 6-7, p. 491-497, dez. 2009. Disponivel em: https://doi.org/10.1016/j.enzmictec.2009.08.003. Acesso em: 26 fev. 2024. WANG, J. et al. Enhanced succinic acid production and magnesium utilization by overexpression of magnesium transporter mgtA in Escherichia coli mutant. Bioresource Technology, v. 170, p 125-131, out. 2014. Disponivel em: https://doi.org/10.1016/j.biortech.2014.07.081. Acesso em: 26 fev. 2024. WANG, J.; ZENG, A.; YUAN, W. Succinic acid fermentation from agricultural wastes: the producing microorganisms and their engineering strategies. Current Opinion in Environmental Science & Health, v. 25, p. 100313, fev. 2022. Disponivel em: https://doi.org/10.1016/j.coesh.2021.100313. Acesso em: 4 fev. 2024. WANG, Z. et al. Enhanced succinic acid production from polyacrylamide ]pretreated cane molasses in microbial electrolysis cells. Journal of Chemical Technology & Biotechnology, v. 93, n. 3, p. 855-860, mar. 2018. Disponivel em: https://doi.org/10.1002/jctb.5440. Acesso em: 4 fev. 2024. WEASTRA. Determination of market potential for selected platform chemicals: Itaconic acid, Succinic acid, 2,5-Furandicarboxylic acid. BioConSepT, jan. 2013. Disponivel em: http://www.bioconsept.eu/wp-content/uploads/BioConSepT_Market-potential-for-selected-platform-chemicals_ppt1.pdf 157 WEASTRA. Market study on succinic acid, itaconic acid and FDCA. BioConSepT, 2011. Disponivel em: http://www.bioconsept.eu/wp-content/uploads/BioConSepT_Market-potential-for-selected-platform-chemicals_report1.pdf. Acesso em: 4 fev. 2024. WEI, J. et al. Chemical composition, sensorial properties, and aroma-active compounds of ciders fermented with Hanseniaspora osmophila and Torulaspora quercuum in co- and sequential fermentations. Food Chemistry, v. 306, p. 125623, fev. 2020. Disponivel em: https://doi.org/10.1016/j.foodchem.2019.125623. Acesso em: 4 fev. 2024. WERPY, T.; PETERSEN, G. Top value added chemicals from biomass: Volume I -- results of screening for potential candidates from sugars and synthesis gas. Golden, CO: Office of Scientific and Technical Information (OSTI), 2004. Disponivel em: https://doi.org/10.2172/15008859. Acesso em: 3 fev. 2024. XI, Y. L. et al. Ultrasonic pretreatment and acid hydrolysis of sugarcane bagasse for succinic acid production using Actinobacillus succinogenes. Bioprocess and Biosystems Engineering, v. 36, n. 11, p. 1779-1785, maio 2013. Disponivel em: https://doi.org/10.1007/s00449-013-0953-z. Acesso em: 4 fev. 2024. XIBERRAS, J. et al. Engineering Saccharomyces cerevisiae for Succinic Acid production from glycerol and carbon dioxide. Frontiers in Bioengineering and Biotechnology, v. 8, jun. 2020. Disponivel em: https://doi.org/10.3389/fbioe.2020.00566. Acesso em: 4 fev. 2024. YAN, D. et al. Construction of reductive pathway in Saccharomyces cerevisiae for effective succinic acid fermentation at low pH value. Bioresource Technology, v. 156, p. 232-239, mar. 2014. Disponivel em: https://doi.org/10.1016/j.biortech.2014.01.053. Acesso em: 4 fev. 2024. YAN, Q. et al. Fermentation process for continuous production of succinic acid in a fibrous bed bioreactor. Biochemical Engineering Journal, v. 91, p. 92-98, out. 2014. Disponivel em: https://doi.org/10.1016/j.bej.2014.08.002. Acesso em: 4 fev. 2024. YIM, H. et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology, v. 7, n. 7, p. 445.52, maio, 2011. Disponivel em: https://doi.org/10.1038/nchembio.580. Acesso em: 3 fev. 2024. ZAHOOR, A. et al. Evaluation of pyruvate decarboxylase ]negative Saccharomyces cerevisiae strains for the production of succinic acid. Engineering in Life Sciences, v. 19, n. 10, p. 711-720, ago. 2019. Disponivel em: https://doi.org/10.1002/elsc.201900080. Acesso em: 4 fev. 2024. ZHANG, Q. et al. Carbon capture and utilization of fermentation CO2: integrated ethanol fermentation and succinic acid production as an efficient platform. Applied Energy, v. 206, p. 364-371, nov. 2017. Disponivel em: https://doi.org/10.1016/j.apenergy.2017.08.193. Acesso em: 3 fev. 2024. 158 ZHANG, W. et al. Expression of global regulator IrrE for improved succinate production under high salt stress by Escherichia coli. Bioresource Technology, v. 254, p. 151-156, abr. 2018. Disponivel em: https://doi.org/10.1016/j.biortech.2018.01.091. Acesso em: 4 fev. 2024. ZHANG, Y. et al. Recent advances in lignocellulosic and algal biomass pretreatment and its biorefinery approaches for biochemicals and bioenergy conversion. Bioresource Technology, v. 367, p. 128281, jan. 2023. Disponivel em: https://doi.org/10.1016/j.biortech.2022.128281. Acesso em: 4 fev. 2024. ZHAO, C.; SHAO, Q.; CHUNDAWAT, S. P. S. Recent advances on ammonia-based pretreatments of lignocellulosic biomass. Bioresource Technology, v. 298, p. 122446, fev. 2020. Disponivel em: https://doi.org/10.1016/j.biortech.2019.122446. Acesso em: 4 fev. 2024. ZHENG, P. et al. Fermentative production of succinic acid from straw hydrolysate by Actinobacillus succinogenes. Bioresource Technology, v. 100, n. 8, p. 2425-2429, abr. 2009. Disponivel em: https://doi.org/10.1016/j.biortech.2008.11.043. Acesso em: 4 fev. 2024. ZHENG, T. et al. A staged representation electrochemical stimulated strategy to regulate intracellular reducing power for improving succinate production byinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAORIGINALTese Doutorado Diniz Alves 28_09_2025.pdfTese Doutorado Diniz Alves 28_09_2025.pdfTese Doutorado Diniz Alvesapplication/pdf9679958https://repositorio.ufba.br/bitstream/ri/43072/3/Tese%20Doutorado%20Diniz%20Alves%2028_09_2025.pdf96af5c6e767c72d46347db6cfae62d6eMD53open accessLICENSElicense.txtlicense.txttext/plain1720https://repositorio.ufba.br/bitstream/ri/43072/4/license.txtd9b7566281c22d808dbf8f29ff0425c8MD54open accessri/430722025-09-29 13:46:13.298open accessoai:repositorio.ufba.br:ri/43072TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pIGUvb3UgZGlzdHJpYnVpciBhIHN1YSBwdWJsaWNhw6fDo28gKGluY2x1aW5kbyBvIHJlc3Vtbykgbm8gZm9ybWF0byBpbXByZXNzbyBlL291IGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBlL291IHbDrWRlby4KCk8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY29yZGEgcXVlIG8gUmVwb3NpdMOzcmlvIHBvZGUsIHNlbSBhbHRlcmFyIG8gY29udGXDumRvLCB0cmFuc3BvciBhIHN1YSBwdWJsaWNhw6fDo28gcGFyYSBxdWFscXVlciBtZWlvIGUvb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8OjbywgcG9kZW5kbyBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrdXAgZSBwcmVzZXJ2YcOnw6NvLiAKCk8gYXV0b3Igb3UgdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgZGVjbGFyYSBxdWUgYSBzdWEgcHVibGljYcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIG7Do28sIHF1ZSBzZWphIGRlIHNldSBjb25oZWNpbWVudG8sIGluZnJpbmdlIGRpcmVpdG9zIGF1dG9yYWlzIGRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIGFvIFJlcG9zaXTDs3JpbyBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgbmVzdGEgbGljZW7Dp2EgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBSRVNVTFRFIERFIFVNIFBBVFJPQ8ONTklPIE9VIEFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTywgVk9Dw4ogREVDTEFSQSBRVUUgUkVTUEVJVE9VIFRPRE9TIEUgUVVBSVNRVUVSIERJUkVJVE9TIERFIFJFVklTw4NPLCBDT01PIFRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKTyBSZXBvc2l0w7NyaW8gc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyLCBjbGFyYW1lbnRlLCBvIChzKSBzZXUocykgbm9tZSAocykgb3UgbyAocykgbm9tZSAocykgZG8gKHMpIGRldGVudG9yIChlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHB1YmxpY2HDp8OjbyBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIGNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==Repositório InstitucionalPUBhttps://repositorio.ufba.br/oai/requestrepositorio@ufba.bropendoar:19322025-09-29T16:46:13Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
| dc.title.pt_BR.fl_str_mv |
Avaliação das tecnologias e potencial econômico para produção de ácido bio succinico |
| dc.title.alternative.pt_BR.fl_str_mv |
Assessment of technologies and economic potential for bio-succinic acid production |
| title |
Avaliação das tecnologias e potencial econômico para produção de ácido bio succinico |
| spellingShingle |
Avaliação das tecnologias e potencial econômico para produção de ácido bio succinico Silva, Diniz Alves de Sant'Ana CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA::PROCESSOS BIOQUIMICOS Biomassa Acido Biosuccínico Biorefinarias Mercado S. cerevisiae Escherichia coli Actinobacillus succinogenes Biomass Bio-succinic acid Biorefinery Market Escherichia coli S. cerevisiae Actinobacillus succinogenes |
| title_short |
Avaliação das tecnologias e potencial econômico para produção de ácido bio succinico |
| title_full |
Avaliação das tecnologias e potencial econômico para produção de ácido bio succinico |
| title_fullStr |
Avaliação das tecnologias e potencial econômico para produção de ácido bio succinico |
| title_full_unstemmed |
Avaliação das tecnologias e potencial econômico para produção de ácido bio succinico |
| title_sort |
Avaliação das tecnologias e potencial econômico para produção de ácido bio succinico |
| author |
Silva, Diniz Alves de Sant'Ana |
| author_facet |
Silva, Diniz Alves de Sant'Ana |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Pontes, Luis Antônio Magalhães |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2865282329757428 |
| dc.contributor.referee1.fl_str_mv |
Campos, Leila Maria Aguilera |
| dc.contributor.referee2.fl_str_mv |
Perpétuo, Élen Aquino |
| dc.contributor.referee3.fl_str_mv |
Moreira, Icaro Thiago Andrade |
| dc.contributor.referee4.fl_str_mv |
Lobato, Ana Katerine de Carvalho Lima |
| dc.contributor.referee5.fl_str_mv |
Pontes, Luiz Antônio Magalhães |
| dc.contributor.authorID.fl_str_mv |
0000-0003-2410-1896 |
| dc.contributor.authorLattes.fl_str_mv |
https://wwws.cnpq.br/cvlattesweb/PKG_MENU.menu?f_cod=D1F22AB3D7D24C86021A43C28884B33E# |
| dc.contributor.author.fl_str_mv |
Silva, Diniz Alves de Sant'Ana |
| contributor_str_mv |
Pontes, Luis Antônio Magalhães Campos, Leila Maria Aguilera Perpétuo, Élen Aquino Moreira, Icaro Thiago Andrade Lobato, Ana Katerine de Carvalho Lima Pontes, Luiz Antônio Magalhães |
| dc.subject.cnpq.fl_str_mv |
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA::PROCESSOS BIOQUIMICOS |
| topic |
CNPQ::ENGENHARIAS::ENGENHARIA QUIMICA::PROCESSOS INDUSTRIAIS DE ENGENHARIA QUIMICA::PROCESSOS BIOQUIMICOS Biomassa Acido Biosuccínico Biorefinarias Mercado S. cerevisiae Escherichia coli Actinobacillus succinogenes Biomass Bio-succinic acid Biorefinery Market Escherichia coli S. cerevisiae Actinobacillus succinogenes |
| dc.subject.por.fl_str_mv |
Biomassa Acido Biosuccínico Biorefinarias Mercado S. cerevisiae Escherichia coli Actinobacillus succinogenes |
| dc.subject.other.pt_BR.fl_str_mv |
Biomass Bio-succinic acid Biorefinery Market Escherichia coli S. cerevisiae Actinobacillus succinogenes |
| description |
O ácido succínico (SA), também conhecido por ácido butanodióico, tem sido usado como matéria-prima nas indústrias alimentícia e farmacêutica além da sua potencial utilização na produção de materiais poliméricos biodegradáveis como o succinato de polibuteno, poliamidas e solventes verde, além de plastificantes, tintas e vernizes. Apesar da rota petroquímica ser responsável por cerca de 97% da produção total do ácido succínico atual, a produção através de utilização de biomassa como matéria- prima tornou-se competitiva frente a oscilações do preço do petróleo e a preocupações mundiais acerca do uso de matéria-prima de origem fóssil e seu impacto na emissão de gases do efeito estufa. Nesta pesquisa foram avaliadas as rotas de obtenção do ácido biosuccínico a partir da biomassa, passando pelo pré-tratamento necessário para tornar o material disponível à fermentação, às tecnologias de síntese de BioSA utilizando diversos microrganismos e à proposição de um processo de separação e purificação para obtenção do produto com uma pureza adequada. Simultaneamente, o trabalho avalia o mercado mundial, analisando oportunidades e ameaças para as rotas de produção do BioSA como matéria-prima substituta para a produção de 1,4 butanodiol (BDO) e succinato de polibutileno (PBS), e como substituto do anidrido maleico, indicando sua vantagem competitiva e principais gargalos para produção. Vários microrganismos têm sido estudados e analisados na produção do BioSA. Escherichia coli e Actinobacillus succinogenes apresentam o maior potencial para o processo de fermentação, sendo os microrganismos com maior número de patentes e trabalhos realizados em pesquisas e, consequentemente, deve concentrar nossos estudos acerca das condições ótimas para aumento do rendimento e produtividade do BioSA. Os principais competidores que operam no mercado global de ácido biossuccínico incluem BioAmber, Reverdia e Succinity, e outras empresas que investem em pesquisa e desenvolvimento de novas tecnologias para a produção de ácido biossuccínico. Espera-se que o mercado continue prosperando nos próximos anos, com previsões de crescimento de aproximadamente 6,0% ao ano até 2027. |
| publishDate |
2024 |
| dc.date.issued.fl_str_mv |
2024-04-10 |
| dc.date.accessioned.fl_str_mv |
2025-09-29T16:46:12Z |
| dc.date.available.fl_str_mv |
2025-09-20 2025-09-29T16:46:12Z |
| dc.type.driver.fl_str_mv |
Doutorado info:eu-repo/semantics/doctoralThesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufba.br/handle/ri/43072 |
| url |
https://repositorio.ufba.br/handle/ri/43072 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.references.pt_BR.fl_str_mv |
AGREN, R.; OTERO, J. M.; NIELSEN, J. Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production. Journal of Industrial Microbiology & Biotechnology, v. 40, n. 7, p. 735-747, abr. 2013. Disponivel em: https://doi.org/10.1007/s10295-013-1269-3. Acesso em: 4 fev. 2024. AHN, J. H.; JANG, Y; LEE, S. Y. Production of succinic acid by metabolically engineered microorganisms. Current Opinion in Biotechnology, v. 42, p. 54-66, dez. 2016. Disponivel em: https://doi.org/10.1016/j.copbio.2016.02.034. Acesso em: 17 mar. 2024. AKHTAR, J.; IDRIS, A. Oil palm empty fruit bunches a promising substrate for succinic acid production via simultaneous saccharification and fermentation. Renewable Energy, v. 114, p. 917-923, dez. 2017. Disponivel em: https://doi.org/10.1016/j.renene.2017.07.113. Acesso em: 4 fev. 2024. ALEXANDRI, M. et al. Downstream separation and purification of succinic acid from fermentation broths using spent sulphite liquor as feedstock. Separation and Purification Technology, v. 209, p. 666-675, jan. 2019. Disponivel em: https://doi.org/10.1016/j.seppur.2018.08.061. Acesso em: 3 fev. 2024. ALEXANDRI, M. et al. Succinic acid production by immobilized cultures using spent sulphite liquor as fermentation medium. Bioresource Technology, v. 238, p. 214-222, ago. 2017. Disponivel em: https://doi.org/10.1016/j.biortech.2017.03.132. Acesso em: 24 fev. 2024. AMIRI, H.; KARIMI, K. Pretreatment and hydrolysis of lignocellulosic wastes for butanol production: Challenges and perspectives. Bioresource Technology, v. 270, p. 702-721, dez. 2018. Disponivel em: https://doi.org/10.1016/j.biortech.2018.08.117. Acesso em: 4 fev. 2024. ANDRADE, F. R. M. Bioproducao de acido succinico a partir de hidrolisado hemicelulosico de bagaco de sorgo sacarino [Sorghum bicolor (L.) Moench]. 2017. Dissertacao (Mestrado em Ciencias) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2017. Disponivel em: http://www.ladebio.org.br/download/bioproducao-de-acido-succinico-a-partir-de-bagaco-de-sorgo-sacarino.pdf. Acesso em: 4 fev. 2024. ANTUNES, E. C. E. S. Recuperacao de acido succinico atraves de extracao liquido-liquido usando contactor de membrana. 2018. Dissertacao (Mestrado em Engenharia Quimica) - Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2018. Disponivel em: https://doi.org/10.1016/j.bej.2016.04.005. Acesso em: 4 fev. 2024. ARAUJO, M. R. et al. Desenvolvimento de plataformas tecnologicas: o caso das plataformas quimicas, In: CONGRESSO LATINO-IBEROAMERICANO DE GESTAO DA TECNOLOGIA. ALTEC, 16., 2015; Porto Alegre. Anais eletronico [...] Porto 135 Alegre: NITEC, 2015. Disponivel em: https://altec2015.nitec.co/altec/papers/608.pdf. Acesso em: 2 fev. 2024. ARIAS, A.; FEIJOO, G.; MOREIRA, M. T. Biorefineries as a driver for sustainability: key aspects, actual development and future prospects. Journal of Cleaner Production, v. 418, p. 137925, jul. 2023. Disponivel em: https://doi.org/10.1016/j.jclepro.2023.137925. Acesso em: 3 fev. 2024. ASINA, F. N. U. et al. Microbial treatment of industrial lignin: successes, problems and challenges. Renewable and Sustainable Energy Reviews, v. 77, p. 1179-1205, set. 2017. Disponivel em: https://doi.org/10.1016/j.rser.2017.03.098. Acesso em: fev. 2024. BABAEI, M. et al. Engineering oleaginous yeast as the host for fermentative succinic acid production from glucose. Frontiers in Bioengineering and Biotechnology, v. 7, nov. 2019a. Disponivel em: https://doi.org/10.3389/fbioe.2019.00361. Acesso em: 4 fev. 2024. BABAEI, M. et al. Valorization of organic waste with simultaneous biogas upgrading for the production of succinic acid. Biochemical Engineering Journal, v. 147, p. 136-145, jul. 2019b. Disponivel em: https://doi.org/10.1016/j.bej.2019.04.012. Acesso em: 4 fev. 2024. BAI, B. et al. Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli. Bioresource Technology, v. 185, p. 56-61, jun. 2015. Disponivel em: https://doi.org/10.1016/j.biortech.2015.02.081. Acesso em: 4 fev. 2024. BAO, H. et al. Succinic acid production from hemicellulose hydrolysate by an Escherichia coli mutant obtained by atmospheric and room temperature plasma and adaptive evolution. Enzyme and Microbial Technology, v.66, p.10-15, nov. 2014. Disponivel em: https://doi.org/10.1016/j.enzmictec.2014.04.017. Acesso em: 23 fev. 2024. BARBOSA, L.C. A. et al. Determinacao da relacao siringila/guaiacila da lignina em madeiras de eucalipto por pirolise acoplada a cromatografia gasosa e espectrometria de massas (PI CG/EM). Quimica Nova, v. 31, n. 8, p. 2035-2041, 2008. Disponivel em: https://doi.org/10.1590/s0100-40422008000800023. Acesso em: 3 fev. 2024. BHARATHIRAJA, B. et al. Biochemical conversion of biodiesel by-product into malic acid: a way towards sustainability. Science of the Total Environment, v. 709, p. 136206, mar. 2020. Disponivel em: https://doi.org/10.1016/j.scitotenv.2019.136206 Acesso em: 3 fev. 2024. BIOAMBER INC. Bioamber and CJ CheilJedang Plan JV for succinic acid production in Asia. Renewable Carbon News, 16 jan. 2017. Disponivel em: https://renewable-carbon.eu/news/bioamber-and-cj-cheiljedang-plan-jv-for-succinic-acid-production-in-asia/. Acesso em: 4 fev. 2024. 136 BORGES, E. R.; PEREIRA, N. Succinic acid production from sugarcane bagasse hemicellulose hydrolysate by Actinobacillus succinogenes. Journal of Industrial Microbiology & Biotechnology, v. 38, n. 8, p. 1001-1011, ago. 2011. Disponivel em: https://doi.org/10.1007/s10295-010-0874-7. Acesso em: 4 fev. 2024. BRADFIELD, M. F. A. et al. Continuous succinic acid production by Actinobacillus succinogenes on xylose-enriched hydrolysate. Biotechnology for Biofuels, v. 8, n. 182, nov. 2015. Disponivel em: https://doi.org/10.1186/s13068-015-0363-3. Acesso em: 4 fev. 2024. BUKHARI, N. A. et al. Compatibility of utilising nitrogen-rich oil palm trunk sap for succinic acid fermentation by Actinobacillus succinogenes 130Z. Bioresource Technology, v. 293, p. 122085, dez. 2019. Disponivel em: https://doi.org/10.1016/j.biortech.2019.122085. Acesso em: 23 fev. 2024. BUKHARI, N. A. et al. Oil palm trunk biomass pretreatment with oxalic acid and its effect on enzymatic digestibility and fermentability. Materials Today: Proceedings, v. 42, n. 1, p. 119-123, 2021. Disponivel em: https://doi.org/10.1016/j.matpr.2020.10.267. Acesso em: 4 fev. 2024. BURGARD, A. et al. Development of a commercial scale process for production of 1,4-butanediol from sugar. Current Opinion in Biotechnology, v. 42, p. 118-125, dez. 2016. Disponivel em: https://doi.org/10.1016/j.copbio.2016.04.016. Acesso em: 4 fev. 2024. CAO, W. et al. Succinic acid biosynthesis from cane molasses under low pH by Actinobacillus succinogenes immobilized in luffa sponge matrices. Bioresource Technology, v. 268, p. 45-51, nov. 2018. Disponivel em: https://doi.org/10.1016/j.biortech.2018.06.075. Acesso em: 4 fev. 2024. CARDOSO, A. L. C. Producao de celulases pelo FSDE16 e hidrolise enzimatica do bagaco de cana-de-acucar. 2017. Trabalho de Conclusao de Curso (Bacharelado em Engenharia Quimica) . Universidade Federal da Paraiba, Joao Pessoa, 2017. Disponivel em: https://repositorio.ufpb.br/jspui/bitstream/123456789/13556/1/ALCC15062018.pdf. Acesso em: 4 fev. 2024. CARVALHO, M.; ROCA, C.; REIS, M. A. M. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods. Bioresource Technology, v. 218, p. 491-497, out. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2016.06.140. Acesso em: 15 fev. 2024. CHALEEWONG, T. et al. Kinetic modeling of succinate production from glucose and xylose by metabolically engineered Escherichia coli KJ12201. Biochemical Engineering Journal, v. 185, 108487, jun. 2022. Disponivel em: https://doi.org/10.1016/j.bej.2022.108487. Acesso em: 17 mar. 2024. 137 CHEMANALYST. Decode the future of succinic acid. 2023a Disponivel em: https://www.chemanalyst.com/industry-report/succinic-acid-market-2899. Acesso em: 25 jan. 2024. CHEMANALYST. Succinic acid price trend and forecast. 2023b .Disponivel em: https://www.chemanalyst.com/Pricing-data/succinic-acid-1270. Acesso em: 25 jan. 2024. CHEN, C. et al.Simultaneous saccharification and fermentation of cassava to succinic acid by Escherichia coli NZN111. Bioresource Technology, v.163, p. 100-105, jul. 2014. Disponivel em: https://doi.org/10.1016/j.biortech.2014.04.020. Acesso em: 23 fev. 2024. CHEN, J. et al. Novel biorefining method for succinic acid processed from sugarcane bagasse. Bioresource Technology, v. 324, p. 124615, mar. 2021. Disponivel em: https://doi.org/10.1016/j.biortech.2020.124615. Acesso em: 4 fev. 2024. CHEN, K. et al. Succinic acid production from enzymatic hydrolysate of sake lees using Actinobacillus succinogenes 130Z. Enzyme and Microbial Technology, v. 47, n. 5, p. 236-240, out. 2010. Disponivel em: https://doi.org/10.1016/j.enzmictec.2010.06.011. Acesso em: 23 fev. 2024 CHEN, K. Q. et al. Succinic acid production by Actinobacillus succinogenes using hydrolysates of spent yeast cells and corn fiber. Bioresource Technology, v. 102, n. 2, p. 1704-1708, jan. 2011. Disponivel em: https://doi.org/10.1016/j.biortech.2010.08.011. Acesso em: 4 fev. 2024. CHEN, P. C. et al. Preparation of A. succinogenes immobilized microfiber membrane for repeated production of succinic acid. Enzyme and Microbial Technology, v. 98, p. 34-42, mar. 2017. Disponivel em: https://doi.org/10.1016/j.enzmictec.2016.12.004. Acesso em: 4 fev. 2024. CHEN, P.; TAO, S.; ZHENG, P. Efficient and repeated production of succinic acid by turning sugarcane bagasse into sugar and support. Bioresource Technology, v. 211, p. 406-413, jul. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2016.03.108. Acesso em: 4 fev. 2024. CHEN, X.; ZHOU, Y.; ZHANG, D. Engineering Corynebacterium crenatumfor enhancing succinic acid production. Journal of Food Biochemistry, v. 42, n. 6, p. e12645, 11 set. 2018. Disponivel em: https://doi.org/10.1111/jfbc.12645. Acesso em: 13 fev. 2024. CHENG, K. et al. Biotechnological production of succinic acid: current state and perspectives. Biofuels, Bioproducts and Biorefining, v. 6, n. 3, p. 302-318, maio/jun. 2012. Disponivel em: https://doi.org/10.1002/bbb.1327. Acesso em: 4 fev. 2024. CHIANG, C. J. et al. Deciphering glutamate and aspartate metabolism to improve production of succinate in Escherichia coli. Journal of the Taiwan Institute of 138 Chemical Engineers, v. 136, p. 104417, jul. 2022. Disponivel em: https://doi.org/10.1016/j.jtice.2022.104417. Acesso em: 4 fev. 2024. CHOI, S. et al. Biorefineries for the production of top building block chemicals and their derivatives. Metabolic Engineering, v. 28, p. 223-239, mar. 2015. Disponivel em: https://doi.org/10.1016/j.ymben.2014.12.007. Acesso em: 3 fev. 2024. CHOI, S. et al. Highly selective production of succinic acid by metabolically engineered Mannheimia succiniciproducens and its efficient purification. Biotechnology and Bioengineering, v. 113, n. 10, p. 2168-2177, abr. 2016. Disponivel em: https://doi.org/10.1002/bit.25988. Acesso em: 24 fev. 2024. CHOUDHARY, H.; NISHIMURA, S.; EBITANI, K. Metal-free oxidative synthesis of succinic acid from biomass-derived furan compounds using a solid acid catalyst with hydrogen peroxide. Applied Catalysis A: General, v. 458, p. 55-62, maio 2013. Disponivel em: https://doi.org/10.1016/j.apcata.2013.03.033. Acesso em: 3 fev. 2024. CIMINI, D. et al. Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. Bioresource Technology, v. 222, p. 355-360, dez. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2016.10.004. Acesso em: 3 fev. 2024. CLARK, J. H. et al. Green chemistry and the biorefinery: a partnership for a sustainable future. Green Chemistry, v. 8, n. 10, p. 853-860, 2006. Disponivel em: https://doi.org/10.1039/B604483M. Acesso em: 3 fev. 2024. COK, B. et al. Succinic acid production derived from carbohydrates: an energy and greenhouse gas assessment of a platform chemical toward a bio-based economy. Biofuels, Bioprod Biorefining, v. 8, n. 1, 16-29, jan. 2014. Disponivel em: https://doi.org/10.1002/bbb.1427. Acesso em: 3 fev. 2024. CORONA-GONZALEZ, R. I. et al. Bagasse hydrolyzates from Agave tequilana as substrates for succinic acid production by Actinobacillus succinogenes in batch and repeated batch reactor. Bioresource Technology, v. 205, p. 15-23, abr. 2016. Disponivel em: https://doi.org/10.1016/j.biortech.2015.12.081. Acesso em: 4 fev. 2024. CUI, Z. et al. Engineering of unconventional yeast Yarrowia lipolytica for efficient succinic acid production from glycerol at low pH. Metabolic Engineering, v. 42, p. 126-133, jul. 2017. Disponivel em: https://doi.org/10.1016/j.ymben.2017.06.007. Acesso em: 15 fev. 2024. DABROS, T. M. H. et al. Transportation fuels from biomass fast pyrolysis, catalytic hydrodeoxygenation, and catalytic fast hydropyrolysis. Progress in Energy and Combustion Science, v. 68, p. 268-309, set. 2018. Disponivel em: https://doi.org/10.1016/j.pecs.2018.05.002. Acesso em: 3 fev. 2024. DAI, Z. et al. Bio ]based succinic acid: an overview of strain development, substrate utilization, and downstream purification. Biofuels, Bioproducts and Biorefining, v. 139 14, n. 5, p. 965-985, nov. 2019. Disponivel em: https://doi.org/10.1002/bbb.2063. Acesso em: 22 fev. 2024. DATA BRIDGE MARKET RESEARCH. Global succinic acid market: industry trends and forecast to 2029. 2021. Disponivel em: https://www.databridgemarketresearch.com/reports/global-succinic-acid-market. Acesso em: 30 set. 2023. DEN, W. et al. Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Frontiers in Chemistry, v. 6, p. 141, 2018. Disponivel em: https://doi.org/10.3389/fchem.2018.00141. Acesso em: 27 ago. 2020. DESSIE, W. et al. Opportunities, challenges, and future perspectives of succinic acid production by Actinobacillus succinogenes. Applied Microbiology and Biotechnology, v. 102, n. 23, p. 9893-9910, set. 2018a. Disponivel em: https://doi.org/10.1007/s00253-018-9379-5. Acesso em: 4 fev. 2024. DESSIE, W. et al. Succinic acid production from fruit and vegetable wastes hydrolyzed by on-site enzyme mixtures through solid state fermentation. Bioresource Technology, v. 247, p. 1177-1180, jan. 2018b. Disponivel em: https://doi.org/10.1016/j.biortech.2017.08.171. Acesso em: 4 fev. 2024. DESSIE, W. et al. Towards the development of efficient, economic and environmentally friendly downstream processing for bio-based succinic acid. Environmental Technology & Innovation, v. 32, p. 103243, jun. 2023. Disponivel em: https://doi.org/10.1016/j.eti.2023.103243. Acesso em: 4 fev. 2024. DHESKALI, E.; KOUTINAS, A. A.; KOOKOS, I. K. A simple and efficient model for calculating fixed capital investment and utilities consumption of large-scale biotransformation processes. Biochemical Engineering Journal, v. 154, p. 107462.107462, fev. 2020. Disponivel em: https://doi.org/10.1016/j.bej.2019.107462 DONG, W. et al. Characterization of a ƒÀ-glucosidase from Paenibacillus species and its application for succinic acid production from sugarcane bagasse hydrolysate. Bioresource Technology, v. 241, p. 309-316, out. 2017. Disponivel em: https://doi.org/10.1016/j.biortech.2017.05.141. Acesso em: 23 fev. 2024. DORADO, M. P. et al. Cereal-based biorefinery development: utilisation of wheat milling by-products for the production of succinic acid. Journal of Biotechnology, v. 143, n. 1, p. 51-59, ago. 2009. Disponivel em: https://doi.org/10.1016/j.jbiotec.2009.06.009. Acesso em: 23 fev. 2024. DUAN, Y. et al. Sustainable biorefinery approaches towards circular economy for conversion of biowaste to value added materials and future perspectives. Fuel, v. 325, p. 124846, out. 2022. Disponivel em: https://doi.org/10.1016/j.fuel.2022.124846. Acesso em: 3 fev. 2024. 140 E4TECH. From the Sugar Platform to biofuels and biochemicals: final report for the European Comission Directorate-Geberal Energy. European Comission, abr. 2015. Disponivel em: https://www.euroconsulting.be/upload/news/documents/20150422055455_EC_Sugar_Platform_final_report.pdf. Acesso em: 4 fev. 2024. EFE, C.; VAN DER WIELEN, L. A. M.; STRAATHOF, A. J. J. Techno-economic analysis of succinic acid production using adsorption from fermentation medium. Biomass and Bioenergy, v. 56, p. 479-492, set. 2013. Disponivel em: https://doi.org/10.1016/j.biombioe.2013.06.002. Acesso em: 4 fev. 2024. ELEKEIROZ. Relatorio anual de sustentabilidade 2011. Sao Paulo, 2012 ERCOLE, A. et al. Continuous succinic acid production by immobilized cells of Actinobacillus succinogenes in a fluidized bed reactor: entrapment in alginate beads. Biochemical Engineering Journal, v. 169, p. 107968, maio 2021. Disponivel em: https://doi.org/10.1016/j.bej.2021.107968. Acesso em: 4 fev. 2024. EVERT, R. F.; EICHHORN, S. E. Raven biologia vegetal. 8. ed. Rio de Janeiro: Guanabara Koogan, 2014. FACT MR. Succinic Acid Market Outlook (2022-2032). 2022. Disponivel em: https://www.factmr.com/report/succinic-acid-market. Acesso em: 3 dez. 2023. FAHD, S. et al. Cropping bioenergy and biomaterials in marginal land: The added value of the biorefinery concept. Energy, v. 37, n. 1, p. 79-93, set. 2012. Disponivel em: https://doi.org/10.1016/j.energy.2011.08.023. Acesso em: 4 fev. 2024. FIGUEROA-TORRES, G. M.; THEODOROPOULOS, C. Techno-economic analysis of a microalgae-based biorefinery network for biofuels and value-added products. Bioresource Technology Reports, v. 23, p. 101524, set. 2023. Disponivel em: https://doi.org/10.1016/j.biteb.2023.101524. Acesso em: 4 fev. 2024. GAO, C. et al. Improving succinate production by engineering oxygen-dependent dynamic pathway regulation in Escherichia coli. Systems Microbiology and Biomanufacturing, v. 2, n. 2, p. 331-344, 2022. Disponivel em: https://doi.org/10.1007/s43393-021-00065-5. Acesso em: 4 fev. 2024. GAO, C. et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnology for Biofuels, v. 9, n. 1, ago. 2016. Disponivel em: https://doi.org/10.1186/s13068-016-0597-8. Acesso em: 25 fev. 2024. GIULIANO, A.; POLETTO, M.; BARLETTA, D. Process optimization of a multi-product biorefinery: the effect of biomass seasonality. Chemical Engineering Research and Design, v. 107, p. 236-252, mar. 2016. Disponivel em: https://doi.org/10.1016/j.cherd.2015.12.011. Acesso em: 3 fev. 2024. GLOBAL INDUSTRY ANALYSTS, INC. Bio-based succinic acid: a global strategic business. Report MCP10705. 2020. Disponivel em: 141 https://www.strategyr.com/market-report-bio-based-succinic-acid-forecasts-global-industry-analysts-inc.asp. Acesso em: 3 fev. 2024. GLOBAL INDUSTRY ANALYSTS, INC. Bioplastics and biopolymers. Report GJOB18199864. 2023. Disponivel em: https://www.marketresearch.com/Global-Industry-Analysts-v1039/Bioplastics-Biopolymers-35040934/. Acesso em: 3 fev. 2024. GLOBAL INFORMATION. Global succinic acid market: 2023-2030. Disponivel em: https://www.giiresearch.com/report/dmin1297858-global-succinic-acid-market.html. Acesso em: 6 dez. 2023. GLOBAL MARKET. Global succinic acid market: insights. Disponivel em: https://www.globalmarketestimates.com/market-report/global-succinic-acid-market-3290. Acesso em: 5 dez. 2023. GLOBE NEWS WIRE. Acrylic acid market to reach USD 20.19 billion by 2027. 2020 Disponivel em: https://www.globenewswire.com/news-release/2020/08/12/2076817/0/en/Acrylic-Acid-Market-To-Reach-USD-20-19-Billion-By-2027-Reports-and-Data.html. Acesso em: 12 ago. 2020. GLOBE NEWS WIRE. Succinic acid market size and value to reach USD 359.8 million in 2032. Growing at CAGR of 7.3%; Market.us Study. 2023. Disponivel em: https://www.globenewswire.com/news-release/2023/05/09/2664413/0/en/Succinic-Acid-Market-Size-and-Value-to-Reach-USD-359-8-Million-in-2032-Growing-at-CAGR-of-7-3-Market-us-Study.html. Acesso em: 1 set. 2023. GONZALES, T. A. et al. Optimization of anaerobic fermentation of Actinobacillus succinogenes for increase the succinic acid production. Biocatalysis and Agricultural Biotechnology, v. 27, p. 101718, ago. 2020. Disponivel em: https://doi.org/10.1016/j.bcab.2020.101718. Acesso em: 4 fev. 2024. GRAND VIEW RESEARCH. Bio-succinic acid market size, share & trends analysis report by application (BDO, polyester polyols), by end use (industrial, food & beverages), by region, and segment forecasts, 2022 - 2030. 2021a. Disponivel em: https://www.grandviewresearch.com/industry-analysis/bio-succinic-acid-market. Acesso em: 3 fev. 2024. GRAND VIEW RESEARCH. Succinic acid market size, share & trends analysis report by type (petro-based, bio-based), by end use (food & beverages, pharmaceuticals, industrial), by region (North America, Europe, APAC, CSA, MEA), and segment forecasts, 2022 - 2030. 2021b. Disponivel em: https://www.grandviewresearch.com/industry-analysis/succinic-acid-market. Acesso em: 4 fev. 2024. GUETTLER, M. V.; RUMLER, D.; JAIN, M. K. Actinobacillus succinogenes sp. nov., a novel succinic-acid-producing strain from the bovine rumen. International Journal 142 of Systematic and Evolutionary Microbiology, v. 49, n. 1, p. 207-216, jan. 1999. Disponivel em: https://doi.org/10.1099/00207713-49-1-207. Acesso em: 3 fev. 2024. GUNNARSSON, I. B. et al. Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.). Bioresource Technology, v. 182, p. 58-66, abr. 2015. Disponivel em: https://doi.org/10.1016/j.biortech.2015.01.126. Acesso em: 3 fev. 2024. GUNNARSSON, I. B.; KARAKASHEV, D.; ANGELIDAKI, I. Succinic acid production by fermentation of Jerusalem artichoke tuber hydrolysate with Actinobacillus succinogenes 130Z. Industrial Crops and Products, v. 62, p. 125-129, dez. 2014. Disponivel em: https://doi.org/10.1016/j.indcrop.2014.08.023. Acesso em: 23 fev. 2024. GUO, F. et al. Improved succinic acid production through the reconstruction of methanol dissimilation in Escherichia coli. Bioresources and Bioprocessing, v. 9, n. 1, maio 2022. Disponivel em: https://doi.org/10.1186/s40643-022-00547-x. Acesso em: 4 fev. 2024. GURBUZ, E. I.; WETTSTEIN, S. G.; DUMESIC, J. A. Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents. ChemSusChem, v. 5, n. 2, p. 383-387, 2012. Disponivel em: https://doi.org/10.1002/cssc.201100608. Acesso em: 3 fev. 2024. GUTIERREZ-GARCIA, A. K.; ALVAREZ-GUZMAN, C. L.; LEON-RODRIGUEZ, A. Autodisplay of alpha amylase from Bacillus Megaterium in E. Coli for the bioconversion of starch into hydrogen, ethanol and succinic acid. Enzyme and Microbial Technology, v. 134, p. 109477, mar. 2020. Disponivel em: https://doi.org/10.1016/j.enzmictec.2019.109477. Acesso em: 4 fev. 2024. HAFYAN, R. H. et al. Integrated biorefinery for bioethanol and succinic acid co-production from bread waste: Techno-economic feasibility and life cycle assessment. Energy Conversion and Management, v. 301, p. 118033, fev. 2024. Disponivel em: https://doi.org/10.1016/j.enconman.2023.118033. Acesso em: 22 mar. 2024. HOLLADAY, J. E. et al. Top value-added chemicals from biomass. Volume II: results of screening for potential candidates from biorefinery lignin. Oak Ridge, Pacific Northwest National Laboratory (PNNL): National Renewable Energy Laboratory (NREL), 2007. Disponivel em: https://doi.org/10.2172/921839. Acesso em: 15 fev. 2024. IBGE . INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATISTICA. Censo Brasileiro de 2022. Rio de Janeiro: IBGE, 2023. IMPORTACOES de produtos dos Capitulos - 01 a 99 da NCM. Receita Federal, 2016. Disponivel em: http://receita.economia.gov.br/dados/resultados/comercio-exterior/importacoes-de-produtos-dos-capitulos-01-a-99-da-ncm 143 INDERA LUTHFI, A. A. et al. Biorefinery approach towards greener succinic acid production from oil palm frond bagasse. Process Biochemistry, v. 51, n. 10, p. 1527-1537, out. 2016. Disponivel em: https://doi.org/10.1016/j.procbio.2016.08.011. Acesso em: 4 fev. 2024. INTERNATIONAL TRADE CENTRE. Trade Map: trade statistics for international business development. 2020. Disponivel em: https://www.trademap.org/ Acesso em: 4 fev. 2024. IOANNIDOU, S. M. et al. Techno-economic and environmental sustainability assessment of succinic acid production from municipal biowaste using an electrochemical membrane bioreactor. Chemical Engineering Journal, v. 473, p. 145070, out. 2023. Disponivel em: https://doi.org/10.1016/j.cej.2023.145070. Acesso em: 21 fev. 2024. ISIKGOR, F. H.; BECER, C. R. Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, v. 6, n. 25, p. 4497-4559, 2015. Disponivel em: https://doi.org/10.1039/c5py00263j. Acesso em: 15 fev. 2024. ITO, Y.; HIRASAWA, T.; SHIMIZU, H. Metabolic engineering of Saccharomyces Cerevisiaeto improve succinic acid production based on metabolic profiling. Bioscience, Biotechnology, and Biochemistry, v. 78, n. 1, p. 151-159, 2 jan. 2014. Disponivel em: https://doi.org/10.1080/09168451.2014.877816. Acesso em: 4 fev. 2024. JAMPATESH, S. et al. Evaluation of inhibitory effect and feasible utilization of dilute acid-pretreated rice straws on succinate production by metabolically engineered Escherichia coli AS1600a. Bioresource Technology, v. 273, p. 93-102, fev. 2019. Disponivel em: https://doi.org/10.1016/j.biortech.2018.11.002. Acesso em: 4 fev. 2024. JANTAMA, K. et al. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering, v. 99, n. 5, p. 1140-1153, 2008. Disponivel em: https://doi.org/10.1002/bit.21694. Acesso em: 23 fev. 2024. JANTAMA, K. et al. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coliC. Biotechnology and Bioengineering, v. 101, n. 5, p. 881-893, dez. 2008. Disponivel em: https://doi.org/10.1002/bit.22005. Acesso em: 23 fev. 2024. JAYARAM, V. B. et al. Succinic acid in levels produced by yeast (Saccharomyces cerevisiae) during fermentation strongly impacts wheat bread dough properties. Food Chemistry, v. 151, p. 421-428, maio 2014. Disponivel em: https://doi.org/10.1016/j.foodchem.2013.11.025. Acesso em: 4 fev. 2024. JIANG, M. et al. Effect of growth phase feeding strategies on succinate production by metabolically engineered Escherichia coli. Applied and Environmental 144 Microbiology, v. 76, n. 4, p. 1298-1300, fev. 2010. Disponivel em: https://doi.org/10.1128/aem.02190-09. Acesso em: 4 fev. 2024. JIANG, M. et al. Progress of succinic acid production from renewable resources: Metabolic and fermentative strategies. Bioresource Technology, v. 245, p. 1710-1717, dez. 2017. Disponivel em: https://doi.org/10.1016/j.biortech.2017.05.209. Acesso em: 20 fev. 2024. JIANG, M. et al. Succinic acid production from cellobiose by Actinobacillus succinogenes. Bioresource Technology, v. 135, p. 469-474, maio 2013. Disponivel em: https://doi.org/10.1016/j.biortech.2012.10.019. Acesso em: 23 fev. 2024. KANG, K. H. et al. Hydrogenation of succinic acid to 1,4-butanediol over Re.Ru bimetallic catalysts supported on mesoporous carbon. Applied Catalysis A: General, v. 490, p. 153-162, jan. 2015. Disponivel em: https://doi.org/10.1016/j.apcata.2014.11.029. Acesso em: 4 fev. 2024. KANG, K. H. et al. Hydrogenation of succinic acid to ƒÁ-butyrolactone and 1,4-butanediol over mesoporous rhenium.copper.carbon composite catalyst. Journal of Molecular Catalysis A: Chemical, v. 395, p. 234-242, dez. 2014. Disponivel em: https://doi.org/10.1016/j.molcata.2014.08.032. Acesso em: 4 fev. 2024. KIM, P. et al. Effect of Overexpression of Actinobacillus succinogenes Phosphoenolpyruvate Carboxykinase on Succinate production in Escherichia coli. Applied and Environmental Microbiology, v. 70, n. 2, p. 1238-1241, fev. 2004. Disponivel em: https://doi.org/10.1128/aem.70.2.1238-1241.2004. Acesso em: 4 fev. 2024. KOBAYASHI, H. et al. Conversion of cellulose into renewable chemicals by supported metal catalysis. Applied Catalysis A: General, v. 409-410, p. 13-20, dez. 2011. Disponivel em: https://doi.org/10.1016/j.apcata.2011.10.014. Acesso em: 4 fev. 2024. KUBO, Y.; TAKAGI, H.; NAKAMORI, S. Effect of gene disruption of succinate dehydrogenase on succinate production in a sake yeast strain. Journal of Bioscience and Bioengineering, v. 90, n. 6, p. 619-624, jan. 2000. Disponivel em: https://doi.org/10.1016/s1389-1723(00)90006-9. Acesso em: 4 fev. 2024. KUGLARZ, M. et al. Integrated production of cellulosic bioethanol and succinic acid from rapeseed straw after dilute-acid pretreatment. Bioresource Technology, v. 265, p. 191-199, out. 2018. Disponivel em: https://doi.org/10.1016/j.biortech.2018.05.099. Acesso em: 4 fev. 2024. KUMAR, R.; BASAK, B.; JEON, B. H. Sustainable production and purification of succinic acid: a review of membrane-integrated green approach. Journal of Cleaner Production, v. 277, p. 123954, dez. 2020. Disponivel em: https://doi.org/10.1016/j.jclepro.2020.123954. Acesso em: 4 fev. 2024. 145 KUMARI, D.; SINGH, R. Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renewable and Sustainable Energy Reviews, v. 90, p. 877-891, jul. 2018. Disponivel em: https://doi.org/10.1016/j.rser.2018.03.111. Acesso em: 4 fev. 2024. KURZROCK, T.; WEUSTER-BOTZ, D. Recovery of succinic acid from fermentation broth. Biotechnology Letters, v. 32, n. 3, p. 331-339, 2010. Disponivel em: https://doi.org/10.1007/s10529-009-0163-6. Acesso em: 4 fev. 2024. LADAKIS, D. et al. Valorization of spent sulphite liquor for succinic acid production via continuous fermentation system. Biochemical Engineering Journal, v. 137, p. 262-272, set. 2018. Disponivel em: https://doi.org/10.1016/j.bej.2018.05.015. Acesso em: 3 fev. 2024. LEE, J. W. et al. Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metabolic Engineerin |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal da Bahia |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Engenharia Quimica (PPEQ) |
| dc.publisher.initials.fl_str_mv |
UFBA |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Escola Politécnica |
| publisher.none.fl_str_mv |
Universidade Federal da Bahia |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
| instname_str |
Universidade Federal da Bahia (UFBA) |
| instacron_str |
UFBA |
| institution |
UFBA |
| reponame_str |
Repositório Institucional da UFBA |
| collection |
Repositório Institucional da UFBA |
| bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/43072/3/Tese%20Doutorado%20Diniz%20Alves%2028_09_2025.pdf https://repositorio.ufba.br/bitstream/ri/43072/4/license.txt |
| bitstream.checksum.fl_str_mv |
96af5c6e767c72d46347db6cfae62d6e d9b7566281c22d808dbf8f29ff0425c8 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
| repository.mail.fl_str_mv |
repositorio@ufba.br |
| _version_ |
1847338977971929088 |