Multiscale Spectral Residue for Faster Image Object Detection
| Main Author: | |
|---|---|
| Publication Date: | 2013 |
| Format: | Master thesis |
| Language: | por |
| Source: | Repositório Institucional da UFBA |
| Download full: | http://repositorio.ufba.br/ri/handle/ri/21340 |
Summary: | Accuracy in image object detection has been usually achieved at the expense of much computational load. Therefore a trade-o between detection performance and fast execution commonly represents the ultimate goal of an object detector in real life applications. Most images are composed of non-trivial amounts of background information, such as sky, ground and water. In this sense, using an object detector against a recurring background pattern can require a signi cant amount of the total processing time. To alleviate this problem, search space reduction methods can help focusing the detection procedure on more distinctive image regions. |
| id |
UFBA-2_a1c3767a6c0fcf1d839f8c9305d4b17d |
|---|---|
| oai_identifier_str |
oai:repositorio.ufba.br:ri/21340 |
| network_acronym_str |
UFBA-2 |
| network_name_str |
Repositório Institucional da UFBA |
| repository_id_str |
1932 |
| spelling |
Silva Filho, Jose Grimaldo daOliveira, Luciano Rebouças deSchwartz, William RobsonMello, Vinicius MoreiraApolinário Júnior, Antonio Lopes2017-02-07T11:51:58Z2017-02-07T11:51:58Z2017-02-072013-01-18http://repositorio.ufba.br/ri/handle/ri/21340Accuracy in image object detection has been usually achieved at the expense of much computational load. Therefore a trade-o between detection performance and fast execution commonly represents the ultimate goal of an object detector in real life applications. Most images are composed of non-trivial amounts of background information, such as sky, ground and water. In this sense, using an object detector against a recurring background pattern can require a signi cant amount of the total processing time. To alleviate this problem, search space reduction methods can help focusing the detection procedure on more distinctive image regions.Among the several approaches for search space reduction, we explored saliency information to organize regions based on their probability of containing objects. Saliency detectors are capable of pinpointing regions which generate stronger visual stimuli based solely on information extracted from the image. The fact that saliency methods do not require prior training is an important benefit, which allows application of these techniques in a broad range of machine vision domains. We propose a novel method toward the goal of faster object detectors. The proposed method was grounded on a multi-scale spectral residue (MSR) analysis using saliency detection. For better search space reduction, our method enables fine control of search scale, more robustness to variations on saliency intensity along an object length and also a direct way to control the balance between search space reduction and false negatives caused by region selection. Compared to a regular sliding window search over the images, in our experiments, MSR was able to reduce by 75% (in average) the number of windows to be evaluated by an object detector while improving or at least maintaining detector ROC performance. The proposed method was thoroughly evaluated over a subset of LabelMe dataset (person images), improving detection performance in most cases. This evaluation was done comparing object detection performance against different object detectors, with and without MSR. Additionally, we also provide evaluation of how different object classes interact with MSR, which was done using Pascal VOC 2007 dataset. Finally, tests made showed that window selection performance of MSR has a good scalability with regard to image size. From the obtained data, our conclusion is that MSR can provide substantial benefits to existing sliding window detectorsSubmitted by Diogo Barreiros (diogo.barreiros@ufba.br) on 2017-02-06T16:59:36Z No. of bitstreams: 1 dissertacao_mestrado_jose-grimaldo.pdf: 19406681 bytes, checksum: d108855fa0fb0d44ee5d1cb59579a04c (MD5)Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2017-02-07T11:51:58Z (GMT) No. of bitstreams: 1 dissertacao_mestrado_jose-grimaldo.pdf: 19406681 bytes, checksum: d108855fa0fb0d44ee5d1cb59579a04c (MD5)Made available in DSpace on 2017-02-07T11:51:58Z (GMT). No. of bitstreams: 1 dissertacao_mestrado_jose-grimaldo.pdf: 19406681 bytes, checksum: d108855fa0fb0d44ee5d1cb59579a04c (MD5)Multiscale Spectral ResidueImageObjectMultiscale Spectral Residue for Faster Image Object Detectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisEscola Politécnica / Instituto de MatemáticaPrograma de Pós-Graduação em MecatrônicaUFBAbrasilinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFBAinstname:Universidade Federal da Bahia (UFBA)instacron:UFBAORIGINALdissertacao_mestrado_jose-grimaldo.pdfdissertacao_mestrado_jose-grimaldo.pdfapplication/pdf19406681https://repositorio.ufba.br/bitstream/ri/21340/1/dissertacao_mestrado_jose-grimaldo.pdfd108855fa0fb0d44ee5d1cb59579a04cMD51LICENSElicense.txtlicense.txttext/plain1345https://repositorio.ufba.br/bitstream/ri/21340/2/license.txtff6eaa8b858ea317fded99f125f5fcd0MD52TEXTdissertacao_mestrado_jose-grimaldo.pdf.txtdissertacao_mestrado_jose-grimaldo.pdf.txtExtracted texttext/plain208826https://repositorio.ufba.br/bitstream/ri/21340/3/dissertacao_mestrado_jose-grimaldo.pdf.txte0d792610b0ba093db14db46d161ebaaMD53ri/213402022-07-01 10:46:41.901oai:repositorio.ufba.br:ri/21340VGVybW8gZGUgTGljZW7vv71hLCBu77+9byBleGNsdXNpdm8sIHBhcmEgbyBkZXDvv71zaXRvIG5vIFJlcG9zaXTvv71yaW8gSW5zdGl0dWNpb25hbCBkYSBVRkJBLgoKIFBlbG8gcHJvY2Vzc28gZGUgc3VibWlzc++/vW8gZGUgZG9jdW1lbnRvcywgbyBhdXRvciBvdSBzZXUgcmVwcmVzZW50YW50ZSBsZWdhbCwgYW8gYWNlaXRhciAKZXNzZSB0ZXJtbyBkZSBsaWNlbu+/vWEsIGNvbmNlZGUgYW8gUmVwb3NpdO+/vXJpbyBJbnN0aXR1Y2lvbmFsIGRhIFVuaXZlcnNpZGFkZSBGZWRlcmFsIGRhIEJhaGlhIApvIGRpcmVpdG8gZGUgbWFudGVyIHVtYSBj77+9cGlhIGVtIHNldSByZXBvc2l077+9cmlvIGNvbSBhIGZpbmFsaWRhZGUsIHByaW1laXJhLCBkZSBwcmVzZXJ2Ye+/ve+/vW8uIApFc3NlcyB0ZXJtb3MsIG7vv71vIGV4Y2x1c2l2b3MsIG1hbnTvv71tIG9zIGRpcmVpdG9zIGRlIGF1dG9yL2NvcHlyaWdodCwgbWFzIGVudGVuZGUgbyBkb2N1bWVudG8gCmNvbW8gcGFydGUgZG8gYWNlcnZvIGludGVsZWN0dWFsIGRlc3NhIFVuaXZlcnNpZGFkZS4KCiBQYXJhIG9zIGRvY3VtZW50b3MgcHVibGljYWRvcyBjb20gcmVwYXNzZSBkZSBkaXJlaXRvcyBkZSBkaXN0cmlidWnvv73vv71vLCBlc3NlIHRlcm1vIGRlIGxpY2Vu77+9YSAKZW50ZW5kZSBxdWU6CgogTWFudGVuZG8gb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHJlcGFzc2Fkb3MgYSB0ZXJjZWlyb3MsIGVtIGNhc28gZGUgcHVibGljYe+/ve+/vWVzLCBvIHJlcG9zaXTvv71yaW8KcG9kZSByZXN0cmluZ2lyIG8gYWNlc3NvIGFvIHRleHRvIGludGVncmFsLCBtYXMgbGliZXJhIGFzIGluZm9ybWHvv73vv71lcyBzb2JyZSBvIGRvY3VtZW50bwooTWV0YWRhZG9zIGVzY3JpdGl2b3MpLgoKIERlc3RhIGZvcm1hLCBhdGVuZGVuZG8gYW9zIGFuc2Vpb3MgZGVzc2EgdW5pdmVyc2lkYWRlIGVtIG1hbnRlciBzdWEgcHJvZHXvv73vv71vIGNpZW5077+9ZmljYSBjb20gCmFzIHJlc3Ryae+/ve+/vWVzIGltcG9zdGFzIHBlbG9zIGVkaXRvcmVzIGRlIHBlcmnvv71kaWNvcy4KCiBQYXJhIGFzIHB1YmxpY2Hvv73vv71lcyBzZW0gaW5pY2lhdGl2YXMgcXVlIHNlZ3VlbSBhIHBvbO+/vXRpY2EgZGUgQWNlc3NvIEFiZXJ0bywgb3MgZGVw77+9c2l0b3MgCmNvbXB1bHPvv71yaW9zIG5lc3NlIHJlcG9zaXTvv71yaW8gbWFudO+/vW0gb3MgZGlyZWl0b3MgYXV0b3JhaXMsIG1hcyBtYW5077+9bSBhY2Vzc28gaXJyZXN0cml0byAKYW8gbWV0YWRhZG9zIGUgdGV4dG8gY29tcGxldG8uIEFzc2ltLCBhIGFjZWl0Ye+/ve+/vW8gZGVzc2UgdGVybW8gbu+/vW8gbmVjZXNzaXRhIGRlIGNvbnNlbnRpbWVudG8KIHBvciBwYXJ0ZSBkZSBhdXRvcmVzL2RldGVudG9yZXMgZG9zIGRpcmVpdG9zLCBwb3IgZXN0YXJlbSBlbSBpbmljaWF0aXZhcyBkZSBhY2Vzc28gYWJlcnRvLgo=Repositório InstitucionalPUBhttps://repositorio.ufba.br/oai/requestrepositorio@ufba.bropendoar:19322022-07-01T13:46:41Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA)false |
| dc.title.pt_BR.fl_str_mv |
Multiscale Spectral Residue for Faster Image Object Detection |
| title |
Multiscale Spectral Residue for Faster Image Object Detection |
| spellingShingle |
Multiscale Spectral Residue for Faster Image Object Detection Silva Filho, Jose Grimaldo da Multiscale Spectral Residue Image Object |
| title_short |
Multiscale Spectral Residue for Faster Image Object Detection |
| title_full |
Multiscale Spectral Residue for Faster Image Object Detection |
| title_fullStr |
Multiscale Spectral Residue for Faster Image Object Detection |
| title_full_unstemmed |
Multiscale Spectral Residue for Faster Image Object Detection |
| title_sort |
Multiscale Spectral Residue for Faster Image Object Detection |
| author |
Silva Filho, Jose Grimaldo da |
| author_facet |
Silva Filho, Jose Grimaldo da |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Silva Filho, Jose Grimaldo da |
| dc.contributor.advisor1.fl_str_mv |
Oliveira, Luciano Rebouças de |
| dc.contributor.referee1.fl_str_mv |
Schwartz, William Robson Mello, Vinicius Moreira Apolinário Júnior, Antonio Lopes |
| contributor_str_mv |
Oliveira, Luciano Rebouças de Schwartz, William Robson Mello, Vinicius Moreira Apolinário Júnior, Antonio Lopes |
| dc.subject.por.fl_str_mv |
Multiscale Spectral Residue Image Object |
| topic |
Multiscale Spectral Residue Image Object |
| description |
Accuracy in image object detection has been usually achieved at the expense of much computational load. Therefore a trade-o between detection performance and fast execution commonly represents the ultimate goal of an object detector in real life applications. Most images are composed of non-trivial amounts of background information, such as sky, ground and water. In this sense, using an object detector against a recurring background pattern can require a signi cant amount of the total processing time. To alleviate this problem, search space reduction methods can help focusing the detection procedure on more distinctive image regions. |
| publishDate |
2013 |
| dc.date.submitted.none.fl_str_mv |
2013-01-18 |
| dc.date.accessioned.fl_str_mv |
2017-02-07T11:51:58Z |
| dc.date.available.fl_str_mv |
2017-02-07T11:51:58Z |
| dc.date.issued.fl_str_mv |
2017-02-07 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://repositorio.ufba.br/ri/handle/ri/21340 |
| url |
http://repositorio.ufba.br/ri/handle/ri/21340 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Escola Politécnica / Instituto de Matemática |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Mecatrônica |
| dc.publisher.initials.fl_str_mv |
UFBA |
| dc.publisher.country.fl_str_mv |
brasil |
| publisher.none.fl_str_mv |
Escola Politécnica / Instituto de Matemática |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFBA instname:Universidade Federal da Bahia (UFBA) instacron:UFBA |
| instname_str |
Universidade Federal da Bahia (UFBA) |
| instacron_str |
UFBA |
| institution |
UFBA |
| reponame_str |
Repositório Institucional da UFBA |
| collection |
Repositório Institucional da UFBA |
| bitstream.url.fl_str_mv |
https://repositorio.ufba.br/bitstream/ri/21340/1/dissertacao_mestrado_jose-grimaldo.pdf https://repositorio.ufba.br/bitstream/ri/21340/2/license.txt https://repositorio.ufba.br/bitstream/ri/21340/3/dissertacao_mestrado_jose-grimaldo.pdf.txt |
| bitstream.checksum.fl_str_mv |
d108855fa0fb0d44ee5d1cb59579a04c ff6eaa8b858ea317fded99f125f5fcd0 e0d792610b0ba093db14db46d161ebaa |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFBA - Universidade Federal da Bahia (UFBA) |
| repository.mail.fl_str_mv |
repositorio@ufba.br |
| _version_ |
1847339199572738048 |