Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia

Bibliographic Details
Main Author: Provenza, Marcello Montillo
Publication Date: 2022
Format: Doctoral thesis
Language: por
Source: Biblioteca Digital de Teses e Dissertações da UERJ
Download full: http://www.bdtd.uerj.br/handle/1/18970
Summary: As previsões de óbitos por COVID-19 são úteis para a formulação de políticas públicas, permitindo a utilização de estratégias de isolamento social mais eficazes e com menor impacto econômico e social, além de promover indicadores de como a população adere às vacinas. O objetivo deste trabalho é explorar um amplo conjunto de métodos de previsão para identificar os melhores modelos sem cobertura vacinal (Caso 1) e com cobertura vacinal (Caso 2) no Brasil. Foram considerados os métodos de Inteligência Artificial e os métodos clássicos de econometria. A técnica de validação cruzada para séries temporais foi implementada, fornecendo assim uma estimativa precisa para avaliar a capacidade preditiva dos modelos. Cada modelo foi ajustado considerando uma base inicial de treinamento de 30 valores. No Caso 1, foram usadas as mortes diárias e acumuladas da base Oxford COVID-19 Government Response Tracker. No Caso 2, o conjunto de dados provém do Our World in Data, onde a média móvel de sete dias foi adotada como referência para melhorar a qualidade dos dados. No Caso 1 os modelos foram treinados e testados com 266 amostras considerando um horizonte de previsão de 7 dias. No Caso 2 os modelos foram treinados e testados 494 vezes considerando um horizonte de revisão de sete dias, 486 vezes considerando um horizonte de 15 dias e 471 vezes considerando um horizonte de 30 dias. Foram adotados modelos de diferentes classes: algoritmos ETS, ARIMA, regressão e aprendizado de máquina. A comparação entre as previsões foi feita utilizando os resultados médios das métricas de previsão: R2, RMSE, MAE e MAPE. No Caso 1, as previsões acumuladas ofereceram melhores resultados do que as diárias, pois os modelos são menos influenciados pelas componentes da série temporal: ciclo e sazonalidade. Os melhores resultados para a predição de óbitos diários foram obtidos pelo método de regressão de Ridge (R2 = 0,772, RMSE = 136 e MAE = 113). Os melhores resultados para predição de óbitos acumulados foram obtidos pelo método de regressão Cubist (R2 = 0,993, RMSE = 468 e MAE = 409). No Caso 2, o modelo ARIMA com uma diferenciação apresentou os melhores resultados para um horizonte de sete dias (RMSE = 74 e MAE = 64).
id UERJ_a724ee40e24b95bfb79bfbaf140d8045
oai_identifier_str oai:www.bdtd.uerj.br:1/18970
network_acronym_str UERJ
network_name_str Biblioteca Digital de Teses e Dissertações da UERJ
repository_id_str 2903
spelling Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemiaTime series forecast for deaths in Brazil caused by COVID-19 in the context of the pandemicTime seriesDeathsStatistical modelsMachine learningEngenharia químicaProcessamento de dadosCOVID-19 (Doença)Séries temporaisÓbitosModelos estatísticosAprendizado de máquinaEconometriaCOVID-19COVID 19ENGENHARIAS::ENGENHARIA QUIMICAAs previsões de óbitos por COVID-19 são úteis para a formulação de políticas públicas, permitindo a utilização de estratégias de isolamento social mais eficazes e com menor impacto econômico e social, além de promover indicadores de como a população adere às vacinas. O objetivo deste trabalho é explorar um amplo conjunto de métodos de previsão para identificar os melhores modelos sem cobertura vacinal (Caso 1) e com cobertura vacinal (Caso 2) no Brasil. Foram considerados os métodos de Inteligência Artificial e os métodos clássicos de econometria. A técnica de validação cruzada para séries temporais foi implementada, fornecendo assim uma estimativa precisa para avaliar a capacidade preditiva dos modelos. Cada modelo foi ajustado considerando uma base inicial de treinamento de 30 valores. No Caso 1, foram usadas as mortes diárias e acumuladas da base Oxford COVID-19 Government Response Tracker. No Caso 2, o conjunto de dados provém do Our World in Data, onde a média móvel de sete dias foi adotada como referência para melhorar a qualidade dos dados. No Caso 1 os modelos foram treinados e testados com 266 amostras considerando um horizonte de previsão de 7 dias. No Caso 2 os modelos foram treinados e testados 494 vezes considerando um horizonte de revisão de sete dias, 486 vezes considerando um horizonte de 15 dias e 471 vezes considerando um horizonte de 30 dias. Foram adotados modelos de diferentes classes: algoritmos ETS, ARIMA, regressão e aprendizado de máquina. A comparação entre as previsões foi feita utilizando os resultados médios das métricas de previsão: R2, RMSE, MAE e MAPE. No Caso 1, as previsões acumuladas ofereceram melhores resultados do que as diárias, pois os modelos são menos influenciados pelas componentes da série temporal: ciclo e sazonalidade. Os melhores resultados para a predição de óbitos diários foram obtidos pelo método de regressão de Ridge (R2 = 0,772, RMSE = 136 e MAE = 113). Os melhores resultados para predição de óbitos acumulados foram obtidos pelo método de regressão Cubist (R2 = 0,993, RMSE = 468 e MAE = 409). No Caso 2, o modelo ARIMA com uma diferenciação apresentou os melhores resultados para um horizonte de sete dias (RMSE = 74 e MAE = 64).The predictions of deaths from COVID-19 are useful for the formulation of public policies, allowing the use of more effective social isolation strategies with less economic and social impact, in addition to promoting indicators of how the population adheres to vaccines. The objective of this work is to explore a broad set of prediction methods to identify the best models without vaccination coverage (Case 1) and with vaccination coverage (Case 2) in Brazil. The methods of Artificial Intelligence and the classical methods of econometrics were considered. The cross-validation technique for time series was implemented, thus providing an accurate estimate to assess the predictive capacity of the models. Each model was adjusted considering an initial training base of 30 values. In Case 1, daily and cumulative deaths from the Oxford COVID-19 Government Response Tracker database were used. In Case 2, the dataset comes from Our World in Data, where the seven-day moving average was adopted as a reference to improve data quality. In Case 1 the models were trained and tested with 266 samples considering a forecast horizon of 7 days. In Case 2 the models were trained and tested 494 times considering a forecast horizon of seven days, 486 times considering a horizon of 15 days, and 471 times assuming a horizon of 30 days. Models of different classes were adopted: ETS algorithms, ARIMA, regression, and machine learning. The forecasts were compared using the average results of the forecast metrics: R2, RMSE, MAE, and MAPE. In Case 1, the accumulated forecasts offered better results than the daily ones, as the models are less influenced by the components of the time series: cycle and seasonality. The best results for the prediction of daily deaths were obtained by the Ridge regression method (R2 = 0.772, RMSE = 136, and MAE = 113). The best results for predicting cumulative deaths were obtained by the Cubist regression method (R2 = 0.993, RMSE = 468, and MAE = 409). In Case 2, the ARIMA model with one differentiation showed the best results for a seven-day horizon (RMSE = 74 and MAE = 64).Universidade do Estado do Rio de JaneiroCentro de Tecnologia e Ciências::Instituto de QuímicaBrasilUERJPrograma de Pós-Graduação em Engenharia QuímicaLuna, Aderval Severinohttp://lattes.cnpq.br/0294676847895948Xavier, Vinicius Layterhttp://lattes.cnpq.br/9683190447704675Costa, André Luiz Hemerlyhttp://lattes.cnpq.br/8951119580894280Tôrres, Alexandre Rodrigueshttp://lattes.cnpq.br/1294795998541584Campos, Eduardo Limahttp://lattes.cnpq.br/6118194123564577Amaral, Marcelo Rubens dos Santos dohttp://lattes.cnpq.br/4387513899931248Provenza, Marcello Montillo2023-01-27T12:31:56Z2022-09-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfPROVENZA, Marcello Montillo. Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia. 2022. 52 f. Tese (Doutorado em Engenharia Química) - Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.http://www.bdtd.uerj.br/handle/1/18970porinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UERJinstname:Universidade do Estado do Rio de Janeiro (UERJ)instacron:UERJ2024-02-27T18:35:57Zoai:www.bdtd.uerj.br:1/18970Biblioteca Digital de Teses e Dissertaçõeshttp://www.bdtd.uerj.br/PUBhttps://www.bdtd.uerj.br:8443/oai/requestbdtd.suporte@uerj.bropendoar:29032024-02-27T18:35:57Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)false
dc.title.none.fl_str_mv Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia
Time series forecast for deaths in Brazil caused by COVID-19 in the context of the pandemic
title Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia
spellingShingle Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia
Provenza, Marcello Montillo
Time series
Deaths
Statistical models
Machine learning
Engenharia química
Processamento de dados
COVID-19 (Doença)
Séries temporais
Óbitos
Modelos estatísticos
Aprendizado de máquina
Econometria
COVID-19
COVID 19
ENGENHARIAS::ENGENHARIA QUIMICA
title_short Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia
title_full Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia
title_fullStr Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia
title_full_unstemmed Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia
title_sort Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia
author Provenza, Marcello Montillo
author_facet Provenza, Marcello Montillo
author_role author
dc.contributor.none.fl_str_mv Luna, Aderval Severino
http://lattes.cnpq.br/0294676847895948
Xavier, Vinicius Layter
http://lattes.cnpq.br/9683190447704675
Costa, André Luiz Hemerly
http://lattes.cnpq.br/8951119580894280
Tôrres, Alexandre Rodrigues
http://lattes.cnpq.br/1294795998541584
Campos, Eduardo Lima
http://lattes.cnpq.br/6118194123564577
Amaral, Marcelo Rubens dos Santos do
http://lattes.cnpq.br/4387513899931248
dc.contributor.author.fl_str_mv Provenza, Marcello Montillo
dc.subject.por.fl_str_mv Time series
Deaths
Statistical models
Machine learning
Engenharia química
Processamento de dados
COVID-19 (Doença)
Séries temporais
Óbitos
Modelos estatísticos
Aprendizado de máquina
Econometria
COVID-19
COVID 19
ENGENHARIAS::ENGENHARIA QUIMICA
topic Time series
Deaths
Statistical models
Machine learning
Engenharia química
Processamento de dados
COVID-19 (Doença)
Séries temporais
Óbitos
Modelos estatísticos
Aprendizado de máquina
Econometria
COVID-19
COVID 19
ENGENHARIAS::ENGENHARIA QUIMICA
description As previsões de óbitos por COVID-19 são úteis para a formulação de políticas públicas, permitindo a utilização de estratégias de isolamento social mais eficazes e com menor impacto econômico e social, além de promover indicadores de como a população adere às vacinas. O objetivo deste trabalho é explorar um amplo conjunto de métodos de previsão para identificar os melhores modelos sem cobertura vacinal (Caso 1) e com cobertura vacinal (Caso 2) no Brasil. Foram considerados os métodos de Inteligência Artificial e os métodos clássicos de econometria. A técnica de validação cruzada para séries temporais foi implementada, fornecendo assim uma estimativa precisa para avaliar a capacidade preditiva dos modelos. Cada modelo foi ajustado considerando uma base inicial de treinamento de 30 valores. No Caso 1, foram usadas as mortes diárias e acumuladas da base Oxford COVID-19 Government Response Tracker. No Caso 2, o conjunto de dados provém do Our World in Data, onde a média móvel de sete dias foi adotada como referência para melhorar a qualidade dos dados. No Caso 1 os modelos foram treinados e testados com 266 amostras considerando um horizonte de previsão de 7 dias. No Caso 2 os modelos foram treinados e testados 494 vezes considerando um horizonte de revisão de sete dias, 486 vezes considerando um horizonte de 15 dias e 471 vezes considerando um horizonte de 30 dias. Foram adotados modelos de diferentes classes: algoritmos ETS, ARIMA, regressão e aprendizado de máquina. A comparação entre as previsões foi feita utilizando os resultados médios das métricas de previsão: R2, RMSE, MAE e MAPE. No Caso 1, as previsões acumuladas ofereceram melhores resultados do que as diárias, pois os modelos são menos influenciados pelas componentes da série temporal: ciclo e sazonalidade. Os melhores resultados para a predição de óbitos diários foram obtidos pelo método de regressão de Ridge (R2 = 0,772, RMSE = 136 e MAE = 113). Os melhores resultados para predição de óbitos acumulados foram obtidos pelo método de regressão Cubist (R2 = 0,993, RMSE = 468 e MAE = 409). No Caso 2, o modelo ARIMA com uma diferenciação apresentou os melhores resultados para um horizonte de sete dias (RMSE = 74 e MAE = 64).
publishDate 2022
dc.date.none.fl_str_mv 2022-09-23
2023-01-27T12:31:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PROVENZA, Marcello Montillo. Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia. 2022. 52 f. Tese (Doutorado em Engenharia Química) - Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.
http://www.bdtd.uerj.br/handle/1/18970
identifier_str_mv PROVENZA, Marcello Montillo. Previsão de séries temporais para os óbitos no Brasil causados pela COVID-19 no âmbito da pandemia. 2022. 52 f. Tese (Doutorado em Engenharia Química) - Instituto de Química, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, 2022.
url http://www.bdtd.uerj.br/handle/1/18970
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto de Química
Brasil
UERJ
Programa de Pós-Graduação em Engenharia Química
publisher.none.fl_str_mv Universidade do Estado do Rio de Janeiro
Centro de Tecnologia e Ciências::Instituto de Química
Brasil
UERJ
Programa de Pós-Graduação em Engenharia Química
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UERJ
instname:Universidade do Estado do Rio de Janeiro (UERJ)
instacron:UERJ
instname_str Universidade do Estado do Rio de Janeiro (UERJ)
instacron_str UERJ
institution UERJ
reponame_str Biblioteca Digital de Teses e Dissertações da UERJ
collection Biblioteca Digital de Teses e Dissertações da UERJ
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UERJ - Universidade do Estado do Rio de Janeiro (UERJ)
repository.mail.fl_str_mv bdtd.suporte@uerj.br
_version_ 1829133481656975360