Caracterização da enzima celobiase com modelagem da cinética de hidrólise da celobiose

Bibliographic Details
Main Author: Calsavara, Luiza Pedrina Vilxenski
Publication Date: 1998
Format: Master thesis
Language: por
Source: Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
dARK ID: ark:/35916/0013000005dtk
Download full: http://repositorio.uem.br:8080/jspui/handle/1/3714
Summary: The enzyme cellobiase Novozym 188, which is used for improving hydrolysis of bagasse with cellulase, was characterized in its commercial available form and integrated kinetic models were applied to the hydrolysis of cellobiose. The specific activity of this enzyme was determined for pH values from 3 to 7, and temperatures from 40 to 75 °C, with cellobiose at 2 g/L. Thermal stability was measured at pH 4.8 and temperatures from 40 to 70°C. Substrate inhibition was studied at the same pH, at 50°C, and cellobiose concentrations from 0.4 to 20 g/L. Product inhibition was determined at 40 and 50 °C, pH4.8, cellobiose concentrations of 2 and 20 g/L, and initial glucose concentration nearly zero or 1.8 g/L. The reaction was monitored by means of conversion data of cellobiose into glucose until nearly 100%. The enzyme has shown the greatest specific activity, 17.8 mmol/min.mg protein, at pH 4.5 and 65°C. Thermal activation of the enzyme followed Arrhenius equation with the energy of activation being equal to 11 kcal/mol for pH values between 4 and 5. Thermal deactivation was adequately modeled by the exponential decay model with energy of deactivation giving 81.6 kcal/mol. Substrate inhibition was clearly observed above 10 mM (3.4 g/L) cellobiose. Kinetic parameters obtained by fitting the experimental points to the substrate uncompetitive inhibition model were Km = 2.42 mM, Vmax = 16.3 mmol/min.mg protein and Ks = 54.2 mM, while for the substrate non-competitive inhibition model they were Km = 2.54 mM, Vmax = 17.1 mmol/min.mg protein and Ks = 51.7 mM. The conversion versus time experimental points for the hydrolysis reaction were fitted to the integrated kinetics models for the uncompetitive and non-competitive substrate inhibition and for competitive, uncompetitive and non-competitive product inhibition. Nevertheless, the kinetic parameters Ki and kcat calculated by these models were inconsistent, indicating that the hypotheses that were assumed were not able to describe the total extension of the reaction kinetics from zero to 100%
id UEM-10_a2754a3c33e7c15208ead64f1413551c
oai_identifier_str oai:localhost:1/3714
network_acronym_str UEM-10
network_name_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository_id_str
spelling Caracterização da enzima celobiase com modelagem da cinética de hidrólise da celobioseCharacterization of enzyme cellobiase with modeling of cellobiose hydrolysis kineticsEnzima celobiaseIndústria químicaEnergia alternativaEnzima celobiaseEnzimasPropriedadesBrasil.EngenhariasEngenharia QuímicaThe enzyme cellobiase Novozym 188, which is used for improving hydrolysis of bagasse with cellulase, was characterized in its commercial available form and integrated kinetic models were applied to the hydrolysis of cellobiose. The specific activity of this enzyme was determined for pH values from 3 to 7, and temperatures from 40 to 75 °C, with cellobiose at 2 g/L. Thermal stability was measured at pH 4.8 and temperatures from 40 to 70°C. Substrate inhibition was studied at the same pH, at 50°C, and cellobiose concentrations from 0.4 to 20 g/L. Product inhibition was determined at 40 and 50 °C, pH4.8, cellobiose concentrations of 2 and 20 g/L, and initial glucose concentration nearly zero or 1.8 g/L. The reaction was monitored by means of conversion data of cellobiose into glucose until nearly 100%. The enzyme has shown the greatest specific activity, 17.8 mmol/min.mg protein, at pH 4.5 and 65°C. Thermal activation of the enzyme followed Arrhenius equation with the energy of activation being equal to 11 kcal/mol for pH values between 4 and 5. Thermal deactivation was adequately modeled by the exponential decay model with energy of deactivation giving 81.6 kcal/mol. Substrate inhibition was clearly observed above 10 mM (3.4 g/L) cellobiose. Kinetic parameters obtained by fitting the experimental points to the substrate uncompetitive inhibition model were Km = 2.42 mM, Vmax = 16.3 mmol/min.mg protein and Ks = 54.2 mM, while for the substrate non-competitive inhibition model they were Km = 2.54 mM, Vmax = 17.1 mmol/min.mg protein and Ks = 51.7 mM. The conversion versus time experimental points for the hydrolysis reaction were fitted to the integrated kinetics models for the uncompetitive and non-competitive substrate inhibition and for competitive, uncompetitive and non-competitive product inhibition. Nevertheless, the kinetic parameters Ki and kcat calculated by these models were inconsistent, indicating that the hypotheses that were assumed were not able to describe the total extension of the reaction kinetics from zero to 100%A enzima celobiase Novozym 188, que é empregada na hidrólise do bagaço de cana com a finalidade de aumentar a eficiência da hidrólise com celulase, foi caracterizada na sua forma comercial, e modelos cinéticos integrados foram aplicados à hidrólise da celobiose. A atividade específica desta enzima foi determinada para valores de pH de 3 a 7, e temperaturas de 40 a 75°C, com celobiose 2g/L. A estabilidade térmica - foi determinada no pH 4,8 e temperaturas de 40 a 70°C. A inibição pelo substrato foi estudada no mesmo pH, a 50°C, e concentrações de celobiose de 0,4 a 20 gIL. A inibição pelo produto foi observada a 40 e 50°C, pH 4,8, utilizando-se concentrações de celobiose de 2gIL, 20gIL, e 2g/L com adição de 1,8 gIL de glucose no início da reação. Acompanhou-se a reação por meio dos dados de conversão de celobiose em glucose em função do tempo até aproximadamente 100% de conversão. A enzima apresentou a máxima atividade específica, 17,8 jimoleslmin.mg proteína, no pH 4,5 a 65°C. A ativação térmica da enzima seguiu a equação de Arrhenius com valores de energia de ativação da ordem de 11 kcal/mol para valores de pH entre 4 e 5. A desnaturação térmica seguiu o modelo do decaimento exponencial resultando na energia de desnaturação térmica de 81,6 kcal/mol. A enzima apresentou inibição pelo substrato para concentrações de celobiose acima de 10 mM (3,42 g/L). Os parâmetros cinéticos obtídos por meio do ajuste dos pontos experimentais ao modelo de inibição acompetitiva pelo substrato, foram Km = 2,42 mM, Vmax = 16,3 μmoles/min.mg proteína e Km = 54,2 mM, enquanto para a inibição não-competitiva pelo substrato foram Km = 2,54 mM, Vmax = 17,1 jimoles/min.mg proteína e Ks = 51,7 mM. Os pontos experimentais de conversão em função do tempo da reação de hidrólise ajustaram-se aos modelos cinéticos integrados para os tipos de inibição acompetitiva e não-competitiva pelo substrato e competitiva, não-competitiva ou acompetitiva pelo produto. No entanto, os valores dos parâmetros cinéticos Ki e kcat calculados a partir desses modelos foram inconsistentes, indicando que as hipóteses usadas não foram suficientes para descrever a extensão total da cinética deste tipo de reação de zero a 100% de conversão.112 pUniversidade Estadual de MaringáBrasilDepartamento de Engenharia QuímicaPrograma de Pós-Graduação em Engenharia QuímicaUEMMaringá, PRCentro de TecnologiaEneida Sala CossichCélia Regina Granhen Tavares - UEMEdson Antonio da Silva - UNIOESTESirlei Jaiana Kleinübing - UNICAMPCalsavara, Luiza Pedrina Vilxenski2018-04-17T17:42:52Z2018-04-17T17:42:52Z1998info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://repositorio.uem.br:8080/jspui/handle/1/3714ark:/35916/0013000005dtkporinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)instname:Universidade Estadual de Maringá (UEM)instacron:UEM2023-12-11T16:33:41Zoai:localhost:1/3714Repositório InstitucionalPUBhttp://repositorio.uem.br:8080/oai/requestrepositorio@uem.bropendoar:2023-12-11T16:33:41Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)false
dc.title.none.fl_str_mv Caracterização da enzima celobiase com modelagem da cinética de hidrólise da celobiose
Characterization of enzyme cellobiase with modeling of cellobiose hydrolysis kinetics
title Caracterização da enzima celobiase com modelagem da cinética de hidrólise da celobiose
spellingShingle Caracterização da enzima celobiase com modelagem da cinética de hidrólise da celobiose
Calsavara, Luiza Pedrina Vilxenski
Enzima celobiase
Indústria química
Energia alternativa
Enzima celobiase
Enzimas
Propriedades
Brasil.
Engenharias
Engenharia Química
title_short Caracterização da enzima celobiase com modelagem da cinética de hidrólise da celobiose
title_full Caracterização da enzima celobiase com modelagem da cinética de hidrólise da celobiose
title_fullStr Caracterização da enzima celobiase com modelagem da cinética de hidrólise da celobiose
title_full_unstemmed Caracterização da enzima celobiase com modelagem da cinética de hidrólise da celobiose
title_sort Caracterização da enzima celobiase com modelagem da cinética de hidrólise da celobiose
author Calsavara, Luiza Pedrina Vilxenski
author_facet Calsavara, Luiza Pedrina Vilxenski
author_role author
dc.contributor.none.fl_str_mv Eneida Sala Cossich
Célia Regina Granhen Tavares - UEM
Edson Antonio da Silva - UNIOESTE
Sirlei Jaiana Kleinübing - UNICAMP
dc.contributor.author.fl_str_mv Calsavara, Luiza Pedrina Vilxenski
dc.subject.por.fl_str_mv Enzima celobiase
Indústria química
Energia alternativa
Enzima celobiase
Enzimas
Propriedades
Brasil.
Engenharias
Engenharia Química
topic Enzima celobiase
Indústria química
Energia alternativa
Enzima celobiase
Enzimas
Propriedades
Brasil.
Engenharias
Engenharia Química
description The enzyme cellobiase Novozym 188, which is used for improving hydrolysis of bagasse with cellulase, was characterized in its commercial available form and integrated kinetic models were applied to the hydrolysis of cellobiose. The specific activity of this enzyme was determined for pH values from 3 to 7, and temperatures from 40 to 75 °C, with cellobiose at 2 g/L. Thermal stability was measured at pH 4.8 and temperatures from 40 to 70°C. Substrate inhibition was studied at the same pH, at 50°C, and cellobiose concentrations from 0.4 to 20 g/L. Product inhibition was determined at 40 and 50 °C, pH4.8, cellobiose concentrations of 2 and 20 g/L, and initial glucose concentration nearly zero or 1.8 g/L. The reaction was monitored by means of conversion data of cellobiose into glucose until nearly 100%. The enzyme has shown the greatest specific activity, 17.8 mmol/min.mg protein, at pH 4.5 and 65°C. Thermal activation of the enzyme followed Arrhenius equation with the energy of activation being equal to 11 kcal/mol for pH values between 4 and 5. Thermal deactivation was adequately modeled by the exponential decay model with energy of deactivation giving 81.6 kcal/mol. Substrate inhibition was clearly observed above 10 mM (3.4 g/L) cellobiose. Kinetic parameters obtained by fitting the experimental points to the substrate uncompetitive inhibition model were Km = 2.42 mM, Vmax = 16.3 mmol/min.mg protein and Ks = 54.2 mM, while for the substrate non-competitive inhibition model they were Km = 2.54 mM, Vmax = 17.1 mmol/min.mg protein and Ks = 51.7 mM. The conversion versus time experimental points for the hydrolysis reaction were fitted to the integrated kinetics models for the uncompetitive and non-competitive substrate inhibition and for competitive, uncompetitive and non-competitive product inhibition. Nevertheless, the kinetic parameters Ki and kcat calculated by these models were inconsistent, indicating that the hypotheses that were assumed were not able to describe the total extension of the reaction kinetics from zero to 100%
publishDate 1998
dc.date.none.fl_str_mv 1998
2018-04-17T17:42:52Z
2018-04-17T17:42:52Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.uem.br:8080/jspui/handle/1/3714
dc.identifier.dark.fl_str_mv ark:/35916/0013000005dtk
url http://repositorio.uem.br:8080/jspui/handle/1/3714
identifier_str_mv ark:/35916/0013000005dtk
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
publisher.none.fl_str_mv Universidade Estadual de Maringá
Brasil
Departamento de Engenharia Química
Programa de Pós-Graduação em Engenharia Química
UEM
Maringá, PR
Centro de Tecnologia
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
instname:Universidade Estadual de Maringá (UEM)
instacron:UEM
instname_str Universidade Estadual de Maringá (UEM)
instacron_str UEM
institution UEM
reponame_str Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
collection Repositório Institucional da Universidade Estadual de Maringá (RI-UEM)
repository.name.fl_str_mv Repositório Institucional da Universidade Estadual de Maringá (RI-UEM) - Universidade Estadual de Maringá (UEM)
repository.mail.fl_str_mv repositorio@uem.br
_version_ 1828311904878067712