Multistability in a Periodically Forced Brusselator
Main Author: | |
---|---|
Publication Date: | 2021 |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000r0f5 |
Download full: | https://repositorio.udesc.br/handle/UDESC/3942 |
Summary: | © 2020, Sociedade Brasileira de Física.In this paper, we report on multistability in a periodically forced Brusselator, which is modeled by a nonlinear nonautonomous system of two first-order ordinary differential equations. Multistability regions are detected in a cross section of the four-dimensional parameter space of the model, namely the (ω, F) parameter plane, where ω and F are respectively angular frequency and amplitude of an external forcing. Lyapunov exponents spectra are used to characterize the dynamical behavior of each point in the abovementioned parameter plane. Moreover, basins of attraction, bifurcation diagrams, and phase-space portraits are used to illustrate the coexistence of periodic and chaotic behaviors. |
id |
UDESC-2_fedba3b4bd1e5b626b07e1058b5ce175 |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/3942 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Multistability in a Periodically Forced Brusselator© 2020, Sociedade Brasileira de Física.In this paper, we report on multistability in a periodically forced Brusselator, which is modeled by a nonlinear nonautonomous system of two first-order ordinary differential equations. Multistability regions are detected in a cross section of the four-dimensional parameter space of the model, namely the (ω, F) parameter plane, where ω and F are respectively angular frequency and amplitude of an external forcing. Lyapunov exponents spectra are used to characterize the dynamical behavior of each point in the abovementioned parameter plane. Moreover, basins of attraction, bifurcation diagrams, and phase-space portraits are used to illustrate the coexistence of periodic and chaotic behaviors.2024-12-06T11:40:13Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 144 - 1471678-444810.1007/s13538-020-00806-2https://repositorio.udesc.br/handle/UDESC/3942ark:/33523/001300000r0f5Brazilian Journal of Physics511Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:43:11Zoai:repositorio.udesc.br:UDESC/3942Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:43:11Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Multistability in a Periodically Forced Brusselator |
title |
Multistability in a Periodically Forced Brusselator |
spellingShingle |
Multistability in a Periodically Forced Brusselator Rech P.C.* |
title_short |
Multistability in a Periodically Forced Brusselator |
title_full |
Multistability in a Periodically Forced Brusselator |
title_fullStr |
Multistability in a Periodically Forced Brusselator |
title_full_unstemmed |
Multistability in a Periodically Forced Brusselator |
title_sort |
Multistability in a Periodically Forced Brusselator |
author |
Rech P.C.* |
author_facet |
Rech P.C.* |
author_role |
author |
dc.contributor.author.fl_str_mv |
Rech P.C.* |
description |
© 2020, Sociedade Brasileira de Física.In this paper, we report on multistability in a periodically forced Brusselator, which is modeled by a nonlinear nonautonomous system of two first-order ordinary differential equations. Multistability regions are detected in a cross section of the four-dimensional parameter space of the model, namely the (ω, F) parameter plane, where ω and F are respectively angular frequency and amplitude of an external forcing. Lyapunov exponents spectra are used to characterize the dynamical behavior of each point in the abovementioned parameter plane. Moreover, basins of attraction, bifurcation diagrams, and phase-space portraits are used to illustrate the coexistence of periodic and chaotic behaviors. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021 2024-12-06T11:40:13Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
1678-4448 10.1007/s13538-020-00806-2 https://repositorio.udesc.br/handle/UDESC/3942 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000r0f5 |
identifier_str_mv |
1678-4448 10.1007/s13538-020-00806-2 ark:/33523/001300000r0f5 |
url |
https://repositorio.udesc.br/handle/UDESC/3942 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Brazilian Journal of Physics 51 1 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 144 - 147 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258163049431040 |