Multistability in a Periodically Forced Brusselator

Bibliographic Details
Main Author: Rech P.C.*
Publication Date: 2021
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000r0f5
Download full: https://repositorio.udesc.br/handle/UDESC/3942
Summary: © 2020, Sociedade Brasileira de Física.In this paper, we report on multistability in a periodically forced Brusselator, which is modeled by a nonlinear nonautonomous system of two first-order ordinary differential equations. Multistability regions are detected in a cross section of the four-dimensional parameter space of the model, namely the (ω, F) parameter plane, where ω and F are respectively angular frequency and amplitude of an external forcing. Lyapunov exponents spectra are used to characterize the dynamical behavior of each point in the abovementioned parameter plane. Moreover, basins of attraction, bifurcation diagrams, and phase-space portraits are used to illustrate the coexistence of periodic and chaotic behaviors.
id UDESC-2_fedba3b4bd1e5b626b07e1058b5ce175
oai_identifier_str oai:repositorio.udesc.br:UDESC/3942
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Multistability in a Periodically Forced Brusselator© 2020, Sociedade Brasileira de Física.In this paper, we report on multistability in a periodically forced Brusselator, which is modeled by a nonlinear nonautonomous system of two first-order ordinary differential equations. Multistability regions are detected in a cross section of the four-dimensional parameter space of the model, namely the (ω, F) parameter plane, where ω and F are respectively angular frequency and amplitude of an external forcing. Lyapunov exponents spectra are used to characterize the dynamical behavior of each point in the abovementioned parameter plane. Moreover, basins of attraction, bifurcation diagrams, and phase-space portraits are used to illustrate the coexistence of periodic and chaotic behaviors.2024-12-06T11:40:13Z2021info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 144 - 1471678-444810.1007/s13538-020-00806-2https://repositorio.udesc.br/handle/UDESC/3942ark:/33523/001300000r0f5Brazilian Journal of Physics511Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:43:11Zoai:repositorio.udesc.br:UDESC/3942Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:43:11Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Multistability in a Periodically Forced Brusselator
title Multistability in a Periodically Forced Brusselator
spellingShingle Multistability in a Periodically Forced Brusselator
Rech P.C.*
title_short Multistability in a Periodically Forced Brusselator
title_full Multistability in a Periodically Forced Brusselator
title_fullStr Multistability in a Periodically Forced Brusselator
title_full_unstemmed Multistability in a Periodically Forced Brusselator
title_sort Multistability in a Periodically Forced Brusselator
author Rech P.C.*
author_facet Rech P.C.*
author_role author
dc.contributor.author.fl_str_mv Rech P.C.*
description © 2020, Sociedade Brasileira de Física.In this paper, we report on multistability in a periodically forced Brusselator, which is modeled by a nonlinear nonautonomous system of two first-order ordinary differential equations. Multistability regions are detected in a cross section of the four-dimensional parameter space of the model, namely the (ω, F) parameter plane, where ω and F are respectively angular frequency and amplitude of an external forcing. Lyapunov exponents spectra are used to characterize the dynamical behavior of each point in the abovementioned parameter plane. Moreover, basins of attraction, bifurcation diagrams, and phase-space portraits are used to illustrate the coexistence of periodic and chaotic behaviors.
publishDate 2021
dc.date.none.fl_str_mv 2021
2024-12-06T11:40:13Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1678-4448
10.1007/s13538-020-00806-2
https://repositorio.udesc.br/handle/UDESC/3942
dc.identifier.dark.fl_str_mv ark:/33523/001300000r0f5
identifier_str_mv 1678-4448
10.1007/s13538-020-00806-2
ark:/33523/001300000r0f5
url https://repositorio.udesc.br/handle/UDESC/3942
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Brazilian Journal of Physics
51
1
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 144 - 147
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258163049431040