The dynamics of a symmetric coupling of three modified quadratic maps

Bibliographic Details
Main Author: Rech P.C.*
Publication Date: 2013
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000c6st
Download full: https://repositorio.udesc.br/handle/UDESC/8840
Summary: We investigate the dynamical behavior of a symmetric linear coupling of three quadratic maps with exponential terms, and identify various interesting features as a function of two control parameters. In particular, we investigate the emergence of quasiperiodic states arising from Naimark-Sacker bifurcations of stable period-1, period-2, and period-3 orbits. We also investigate the multistability in the same coupling. Lyapunov exponents, parameter planes, phase space portraits, and bifurcation diagrams are used to investigate transitions from periodic to quasiperiodic states, from quasiperiodic to mode-locked states and to chaotic states, and from chaotic to hyperchaotic states. © 2013 Chinese Physical Society and IOP Publishing Ltd.
id UDESC-2_f96bb89b345f3d136ead3463df002930
oai_identifier_str oai:repositorio.udesc.br:UDESC/8840
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling The dynamics of a symmetric coupling of three modified quadratic mapsWe investigate the dynamical behavior of a symmetric linear coupling of three quadratic maps with exponential terms, and identify various interesting features as a function of two control parameters. In particular, we investigate the emergence of quasiperiodic states arising from Naimark-Sacker bifurcations of stable period-1, period-2, and period-3 orbits. We also investigate the multistability in the same coupling. Lyapunov exponents, parameter planes, phase space portraits, and bifurcation diagrams are used to investigate transitions from periodic to quasiperiodic states, from quasiperiodic to mode-locked states and to chaotic states, and from chaotic to hyperchaotic states. © 2013 Chinese Physical Society and IOP Publishing Ltd.2024-12-06T14:32:07Z2013info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article1674-105610.1088/1674-1056/22/8/080202https://repositorio.udesc.br/handle/UDESC/8840ark:/33523/001300000c6stChinese Physics B228Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T20:59:05Zoai:repositorio.udesc.br:UDESC/8840Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T20:59:05Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv The dynamics of a symmetric coupling of three modified quadratic maps
title The dynamics of a symmetric coupling of three modified quadratic maps
spellingShingle The dynamics of a symmetric coupling of three modified quadratic maps
Rech P.C.*
title_short The dynamics of a symmetric coupling of three modified quadratic maps
title_full The dynamics of a symmetric coupling of three modified quadratic maps
title_fullStr The dynamics of a symmetric coupling of three modified quadratic maps
title_full_unstemmed The dynamics of a symmetric coupling of three modified quadratic maps
title_sort The dynamics of a symmetric coupling of three modified quadratic maps
author Rech P.C.*
author_facet Rech P.C.*
author_role author
dc.contributor.author.fl_str_mv Rech P.C.*
description We investigate the dynamical behavior of a symmetric linear coupling of three quadratic maps with exponential terms, and identify various interesting features as a function of two control parameters. In particular, we investigate the emergence of quasiperiodic states arising from Naimark-Sacker bifurcations of stable period-1, period-2, and period-3 orbits. We also investigate the multistability in the same coupling. Lyapunov exponents, parameter planes, phase space portraits, and bifurcation diagrams are used to investigate transitions from periodic to quasiperiodic states, from quasiperiodic to mode-locked states and to chaotic states, and from chaotic to hyperchaotic states. © 2013 Chinese Physical Society and IOP Publishing Ltd.
publishDate 2013
dc.date.none.fl_str_mv 2013
2024-12-06T14:32:07Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 1674-1056
10.1088/1674-1056/22/8/080202
https://repositorio.udesc.br/handle/UDESC/8840
dc.identifier.dark.fl_str_mv ark:/33523/001300000c6st
identifier_str_mv 1674-1056
10.1088/1674-1056/22/8/080202
ark:/33523/001300000c6st
url https://repositorio.udesc.br/handle/UDESC/8840
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Chinese Physics B
22
8
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258115123216384