Dynamics of a particular Lorenz type system
Main Author: | |
---|---|
Publication Date: | 2010 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Repositório Institucional da Udesc |
dARK ID: | ark:/33523/001300000t1p6 |
Download full: | https://repositorio.udesc.br/handle/UDESC/9715 |
Summary: | In this paper we analytically and numerically investigate the dynamics of a nonlinear three-dimensional autonomous first-order ordinary differential equation system, obtained from paradigmatic Lorenz system by suppressing the y variable in the right-hand side of the second equation. The RouthHurwitz criterion is used to decide on the stability of the nontrivial equilibrium points of the system, as a function of the parameters. The dynamics of the system is numerically characterized by using diagrams that associate colors to largest Lyapunov exponent values in the parameter-space. Additionally, phase-space plots and bifurcation diagrams are used to characterize periodic and chaotic attractors. © 2010 World Scientific Publishing Company. |
id |
UDESC-2_d0d63e61c0e94e5687eacceff837f03e |
---|---|
oai_identifier_str |
oai:repositorio.udesc.br:UDESC/9715 |
network_acronym_str |
UDESC-2 |
network_name_str |
Repositório Institucional da Udesc |
repository_id_str |
6391 |
spelling |
Dynamics of a particular Lorenz type systemIn this paper we analytically and numerically investigate the dynamics of a nonlinear three-dimensional autonomous first-order ordinary differential equation system, obtained from paradigmatic Lorenz system by suppressing the y variable in the right-hand side of the second equation. The RouthHurwitz criterion is used to decide on the stability of the nontrivial equilibrium points of the system, as a function of the parameters. The dynamics of the system is numerically characterized by using diagrams that associate colors to largest Lyapunov exponent values in the parameter-space. Additionally, phase-space plots and bifurcation diagrams are used to characterize periodic and chaotic attractors. © 2010 World Scientific Publishing Company.2024-12-06T19:16:38Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 973 - 9820129-183110.1142/S0129183110015580https://repositorio.udesc.br/handle/UDESC/9715ark:/33523/001300000t1p6International Journal of Modern Physics C217Testoni G.E.*Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:04:45Zoai:repositorio.udesc.br:UDESC/9715Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:04:45Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false |
dc.title.none.fl_str_mv |
Dynamics of a particular Lorenz type system |
title |
Dynamics of a particular Lorenz type system |
spellingShingle |
Dynamics of a particular Lorenz type system Testoni G.E.* |
title_short |
Dynamics of a particular Lorenz type system |
title_full |
Dynamics of a particular Lorenz type system |
title_fullStr |
Dynamics of a particular Lorenz type system |
title_full_unstemmed |
Dynamics of a particular Lorenz type system |
title_sort |
Dynamics of a particular Lorenz type system |
author |
Testoni G.E.* |
author_facet |
Testoni G.E.* Rech P.C.* |
author_role |
author |
author2 |
Rech P.C.* |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Testoni G.E.* Rech P.C.* |
description |
In this paper we analytically and numerically investigate the dynamics of a nonlinear three-dimensional autonomous first-order ordinary differential equation system, obtained from paradigmatic Lorenz system by suppressing the y variable in the right-hand side of the second equation. The RouthHurwitz criterion is used to decide on the stability of the nontrivial equilibrium points of the system, as a function of the parameters. The dynamics of the system is numerically characterized by using diagrams that associate colors to largest Lyapunov exponent values in the parameter-space. Additionally, phase-space plots and bifurcation diagrams are used to characterize periodic and chaotic attractors. © 2010 World Scientific Publishing Company. |
publishDate |
2010 |
dc.date.none.fl_str_mv |
2010 2024-12-06T19:16:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
0129-1831 10.1142/S0129183110015580 https://repositorio.udesc.br/handle/UDESC/9715 |
dc.identifier.dark.fl_str_mv |
ark:/33523/001300000t1p6 |
identifier_str_mv |
0129-1831 10.1142/S0129183110015580 ark:/33523/001300000t1p6 |
url |
https://repositorio.udesc.br/handle/UDESC/9715 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
International Journal of Modern Physics C 21 7 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
p. 973 - 982 |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Udesc instname:Universidade do Estado de Santa Catarina (UDESC) instacron:UDESC |
instname_str |
Universidade do Estado de Santa Catarina (UDESC) |
instacron_str |
UDESC |
institution |
UDESC |
reponame_str |
Repositório Institucional da Udesc |
collection |
Repositório Institucional da Udesc |
repository.name.fl_str_mv |
Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC) |
repository.mail.fl_str_mv |
ri@udesc.br |
_version_ |
1842258172562112512 |