Dynamics of a particular Lorenz type system

Bibliographic Details
Main Author: Testoni G.E.*
Publication Date: 2010
Other Authors: Rech P.C.*
Format: Article
Language: eng
Source: Repositório Institucional da Udesc
dARK ID: ark:/33523/001300000t1p6
Download full: https://repositorio.udesc.br/handle/UDESC/9715
Summary: In this paper we analytically and numerically investigate the dynamics of a nonlinear three-dimensional autonomous first-order ordinary differential equation system, obtained from paradigmatic Lorenz system by suppressing the y variable in the right-hand side of the second equation. The RouthHurwitz criterion is used to decide on the stability of the nontrivial equilibrium points of the system, as a function of the parameters. The dynamics of the system is numerically characterized by using diagrams that associate colors to largest Lyapunov exponent values in the parameter-space. Additionally, phase-space plots and bifurcation diagrams are used to characterize periodic and chaotic attractors. © 2010 World Scientific Publishing Company.
id UDESC-2_d0d63e61c0e94e5687eacceff837f03e
oai_identifier_str oai:repositorio.udesc.br:UDESC/9715
network_acronym_str UDESC-2
network_name_str Repositório Institucional da Udesc
repository_id_str 6391
spelling Dynamics of a particular Lorenz type systemIn this paper we analytically and numerically investigate the dynamics of a nonlinear three-dimensional autonomous first-order ordinary differential equation system, obtained from paradigmatic Lorenz system by suppressing the y variable in the right-hand side of the second equation. The RouthHurwitz criterion is used to decide on the stability of the nontrivial equilibrium points of the system, as a function of the parameters. The dynamics of the system is numerically characterized by using diagrams that associate colors to largest Lyapunov exponent values in the parameter-space. Additionally, phase-space plots and bifurcation diagrams are used to characterize periodic and chaotic attractors. © 2010 World Scientific Publishing Company.2024-12-06T19:16:38Z2010info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/articlep. 973 - 9820129-183110.1142/S0129183110015580https://repositorio.udesc.br/handle/UDESC/9715ark:/33523/001300000t1p6International Journal of Modern Physics C217Testoni G.E.*Rech P.C.*engreponame:Repositório Institucional da Udescinstname:Universidade do Estado de Santa Catarina (UDESC)instacron:UDESCinfo:eu-repo/semantics/openAccess2024-12-07T21:04:45Zoai:repositorio.udesc.br:UDESC/9715Biblioteca Digital de Teses e Dissertaçõeshttps://pergamumweb.udesc.br/biblioteca/index.phpPRIhttps://repositorio-api.udesc.br/server/oai/requestri@udesc.bropendoar:63912024-12-07T21:04:45Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)false
dc.title.none.fl_str_mv Dynamics of a particular Lorenz type system
title Dynamics of a particular Lorenz type system
spellingShingle Dynamics of a particular Lorenz type system
Testoni G.E.*
title_short Dynamics of a particular Lorenz type system
title_full Dynamics of a particular Lorenz type system
title_fullStr Dynamics of a particular Lorenz type system
title_full_unstemmed Dynamics of a particular Lorenz type system
title_sort Dynamics of a particular Lorenz type system
author Testoni G.E.*
author_facet Testoni G.E.*
Rech P.C.*
author_role author
author2 Rech P.C.*
author2_role author
dc.contributor.author.fl_str_mv Testoni G.E.*
Rech P.C.*
description In this paper we analytically and numerically investigate the dynamics of a nonlinear three-dimensional autonomous first-order ordinary differential equation system, obtained from paradigmatic Lorenz system by suppressing the y variable in the right-hand side of the second equation. The RouthHurwitz criterion is used to decide on the stability of the nontrivial equilibrium points of the system, as a function of the parameters. The dynamics of the system is numerically characterized by using diagrams that associate colors to largest Lyapunov exponent values in the parameter-space. Additionally, phase-space plots and bifurcation diagrams are used to characterize periodic and chaotic attractors. © 2010 World Scientific Publishing Company.
publishDate 2010
dc.date.none.fl_str_mv 2010
2024-12-06T19:16:38Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv 0129-1831
10.1142/S0129183110015580
https://repositorio.udesc.br/handle/UDESC/9715
dc.identifier.dark.fl_str_mv ark:/33523/001300000t1p6
identifier_str_mv 0129-1831
10.1142/S0129183110015580
ark:/33523/001300000t1p6
url https://repositorio.udesc.br/handle/UDESC/9715
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv International Journal of Modern Physics C
21
7
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv p. 973 - 982
dc.source.none.fl_str_mv reponame:Repositório Institucional da Udesc
instname:Universidade do Estado de Santa Catarina (UDESC)
instacron:UDESC
instname_str Universidade do Estado de Santa Catarina (UDESC)
instacron_str UDESC
institution UDESC
reponame_str Repositório Institucional da Udesc
collection Repositório Institucional da Udesc
repository.name.fl_str_mv Repositório Institucional da Udesc - Universidade do Estado de Santa Catarina (UDESC)
repository.mail.fl_str_mv ri@udesc.br
_version_ 1842258172562112512